Development and validation of a machine learning model to predict time to renal replacement therapy in patients with chronic kidney disease

Fresenius Medical Care. Annual report; 2021.

GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2020;395:709–33.

Article  Google Scholar 

Kidney Disease. Improving global outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

Google Scholar 

Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305:1553–9.

Article  CAS  PubMed  Google Scholar 

National Institute for Health and Care Excellence. Chronic kidney disease: Assessment and management (NICE Guideline 203).; 2021. http://www.nice.org.uk/guidance/ng203. (Accessed October 20, 2023).

Szeto CC, Leung CB, Wong TYH, Chow KM, Wang AY, Lui SF, et al. Extrapolation of reciprocal creatinine plot is not reliable in predicting the onset of dialysis in patients with progressive renal insufficiency. J Intern Med. 2003;253:335–42.

Article  PubMed  Google Scholar 

Shah BV, Levey AS. Spontaneous changes in the rate of decline in reciprocal serum creatinine: errors in predicting the progression of renal disease from extrapolation of the slope. J Am Soc Nephrol. 1992;2:1186–91.

Article  CAS  PubMed  Google Scholar 

Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11:70.

Article  PubMed  PubMed Central  Google Scholar 

Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28:31–8.

Article  CAS  PubMed  Google Scholar 

Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of artificial intelligence in medicine: an overview. Curr Med Sci. 2021;41:1105–15.

Article  PubMed  PubMed Central  Google Scholar 

Yuan Q, Chen K, Yu Y, Le NQK, Chua MCH. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Brief Bioinform. 2023;24:bbac630.

Article  PubMed  Google Scholar 

Kha Q-H, Le V-H, Hung TNK, Nguyen NTK, Le NQK. Development and validation of an explainable machine learning-based prediction model for drug-food interactions from chemical structures. Sens (Basel). 2023;23:3962.

Article  ADS  CAS  Google Scholar 

Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954–61.

Article  CAS  PubMed  Google Scholar 

Vagliano I, Chesnaye NC, Leopold JH, Jager KJ, Abu-Hanna A, Schut MC. Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal. Clin Kidney J. 2022;15:2266–80.

Article  PubMed  PubMed Central  Google Scholar 

Flechet M, Falini S, Bonetti C, Güiza F, Schetz M, Van den Berghe G, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Crit Care. 2019;23:282.

Article  PubMed  PubMed Central  Google Scholar 

Sanmarchi F, Fanconi C, Golinelli D, Gori D, Hernandez-Boussard T, Capodici A. Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review. J Nephrol. 2023;36:1101–17.

Article  PubMed  PubMed Central  Google Scholar 

Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci Rep. 2022;12:8377.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zacharias HU, Altenbuchinger M, Schultheiss UT, Raffler J, Kotsis F, Ghasemi S, et al. A predictive model for progression of CKD to kidney failure based on routine laboratory tests. Am J Kidney Dis. 2022;79:217–230e1.

Article  CAS  PubMed  Google Scholar 

Su CT, Chang YP, Ku YT, Lin CM. Machine learning models for the prediction of renal failure in chronic kidney disease: a retrospective cohort study. Diagnostics (Basel). 2022;12:2454.

Article  CAS  PubMed  Google Scholar 

Segal Z, Kalifa D, Radinsky K, Ehrenberg B, Elad G, Maor G, et al. Machine learning algorithm for early detection of end-stage renal disease. BMC Nephrol. 2020;21:518.

Article  PubMed  PubMed Central  Google Scholar 

Dai P, Chang W, Xin Z, Cheng H, Ouyang W, Luo A. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in China based on random forest and lasso regression. Front Public Health. 2021;9:678276.

Article  PubMed  PubMed Central  Google Scholar 

Bellocchio F, Lonati C, Ion Titapiccolo J, Nadal J, Meiselbach H, Schmid M, et al. Validation of a novel predictive algorithm for kidney failure in patients suffering from chronic kidney disease: the prognostic reasoning system for chronic kidney disease (Progres-CKD). Int J Environ Res Public Health. 2021;18:12649.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guligowska A, Corsonello A, Pigłowska M, Roller-Wirnsberger R, Wirnsberger G, Ärnlöv J et al. Association between kidney function, nutritional status and anthropometric measures in older people: the screening for CKD among older people across Europe (SCOPE) study. BMC Geriatr. 2020;20;Suppl 1:366.

Gao F, Huang Z, Liang JJ, Kang Y, Ling Y, He Y, et al. Association of malnutrition with all-cause and cardiovascular mortality in patients with mild to severe chronic kidney disease undergoing coronary angiography: a large multicenter longitudinal study. Int Urol Nephrol. 2023;55:3225–36.

Article  PubMed  Google Scholar 

Zhang J, Xiao X, Wu Y, Yang J, Zou Y, Zhao Y, et al. Prognostic nutritional index as a predictor of diabetic nephropathy progression. Nutrients. 2022;14:3634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikizler TA, Burrowes JD, Byham-Gray LD, Campbell KL, Carrero JJ, Chan W, et al. KDOQI Clinical practice guideline for nutrition in CKD: 2020 update. Am J Kidney Dis. 2020;76:1–S107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seiichi M, Enyu I, Masaru H, Yoshinari Y, Kimio T, Kosaku N, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

Article  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. JMLR. 2011;12:2825–30.

MathSciNet  Google Scholar 

Basu S, Faghmous JH, Doupe P. Machine learning methods for precision medicine research designed to reduce health disparities: a structured tutorial. Ethn Dis. 2020;30:217–28.

Article  PubMed  PubMed Central  Google Scholar 

Pérez-Enciso M, Zingaretti LM. A guide for using deep learning for complex trait genomic prediction. Genes (Basel). 2019;20:553.

Article  Google Scholar 

Kvålseth TO. Cautionary note about R2. Am Stat. 1985;39:279–85.

Google Scholar 

Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7:e623.

Article  PubMed  PubMed Central  Google Scholar 

Scikit Learn. Validation curves: plotting scores to evaluate models. 2024. https://scikit-learn.org/stable/modules/learning_curve.html, (Accessed January 29, 2024).

Leist AK, Klee M, Kim JH, Rehkopf DH, Bordas SPA, Muniz-Terrera G, et al. Mapping of machine learning approaches for description, prediction, and causal inference in the social and health sciences. Sci Adv. 2022;8:eabk1942.

Article  PubMed  PubMed Central  Google Scholar 

Nojima J, Meguro S, Ohkawa N, Furukoshi M, Kawai T, Itoh H. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93:746–54.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Skupien J, Warram JH, Smiles AM, Stanton RC, Krolewski AS. Patterns of estimated glomerular filtration rate decline leading to end-stage renal disease in type 1 diabetes. Diabetes Care. 2016;39:2262–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grams ME, Sang Y, Ballew SH, Matsushita K, Astor BC, Carrero JJ, et al. Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: an individual participant meta-analysis of observational data. J Am Soc Nephrol. 2019;30:1746–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe Y, Yamagata K, Nishi S, Hirakata H, Hanafusa N, Saito C, et al. Japanese society for dialysis therapy clinical guideline for hemodialysis initiation for maintenance hemodialysis. Ther Apher Dial. 2015;19(Suppl 1):93–107.

Article  PubMed  Google Scholar 

Lundberg SM, Lee SI. A unified approach to interpreting model predictions. NIPS. 2017.

Chesser AM, Baker LR. Temporary vascular access for first dialysis is common, undesirable and usually avoidable. Clin Nephrol. 1999;51:228–32.

CAS  PubMed  Google Scholar 

Simmons CPL, McMillan DC, McWilliams K, Sande TA, Fearon KC, Tuck S, et al. Prognostic tools in patients with advanced cancer: a systematic review. J Pain Symptom Manage. 2017;53:962–970e10.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif