Diagnostic yield from cardiac gene testing for inherited cardiac conditions and re-evaluation of pre-ACMG variants of uncertain significance

Walsh R, Cook SA (2017) Issues and challenges in diagnostic sequencing for inherited cardiac conditions. Clin Chem 63(1):116–128. https://doi.org/10.1373/clinchem.2016.254698

Article  CAS  PubMed  Google Scholar 

Martinez HR, Beasley GS, Miller N et al (2021) Clinical insights into heritable cardiomyopathies. Front Genet 12:650. https://doi.org/10.3389/FGENE.2021.663450/BIBTEX

Article  Google Scholar 

Garcia-Elias A, Benito B (2018) Ion channel disorders and sudden cardiac death. Int J Mol Sci 19(3):692. https://doi.org/10.3390/IJMS19030692

Article  PubMed  PubMed Central  Google Scholar 

Harper AR, Goel A, Grace C et al (2021) Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 532(53):135–142. https://doi.org/10.1038/s41588-020-00764-0

Article  CAS  Google Scholar 

Walsh R, Tadros R, Bezzina CR (2020) When genetic burden reaches threshold. Eur Heart J 41:3849–3855. https://doi.org/10.1093/EURHEARTJ/EHAA269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunn LM, Lambiase PD (2011) Genetics and cardiovascular disease - causes and prevention of unexpected sudden adult death: the role of the SADS clinic. Heart 97:1122–1127. https://doi.org/10.1136/hrt.2010.218511

Article  CAS  PubMed  Google Scholar 

Musunuru K, Hershberger RE, Day SM et al (2020) Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genomic Precis Med 13:373–385. https://doi.org/10.1161/HCG.0000000000000067

Article  Google Scholar 

Girolami F, Frisso G, Benelli M et al (2018) Contemporary genetic testing in inherited cardiac disease: tools, ethical issues, and clinical applications. J Cardiovasc Med (Hagerstown) 19:1. https://doi.org/10.2459/JCM.0000000000000589

Article  PubMed  Google Scholar 

Ghosh R, Harrison SM, Rehm HL et al (2018) Updated recommendation for the benign stand-alone ACMG/AMP criterion. Hum Mutat 39:1525–1530. https://doi.org/10.1002/HUMU.23642

Article  PubMed  PubMed Central  Google Scholar 

Clinical Genome Resource (2021) ClinGen sequence variant interpretation recommendation for de novo criteria (PS2/PM6). Available from: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/

Brnich SE, Abou Tayoun AN, Couch FJ et al (2019) Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 12:1–12. https://doi.org/10.1186/S13073-019-0690-2/TABLES/3

Article  Google Scholar 

Biesecker LG, Harrison SM (2018) The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 2012(20):1687–1688. https://doi.org/10.1038/gim.2018.42

Article  Google Scholar 

Sophia Genetics Sequence Variant Interpretation Software: Alamut Visual Plus. Available from: https://www.sophiagenetics.com/platform/alamut-visual-plus/

Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nat 5817809(581):434–443. https://doi.org/10.1038/s41586-020-2308-7

Article  CAS  Google Scholar 

Landrum MJ, Lee JM, Riley GR et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980. https://doi.org/10.1093/NAR/GKT1113

Article  CAS  PubMed  Google Scholar 

Kopanos C, Tsiolkas V, Kouris A et al (2019) VarSome: the human genomic variant search engine. Bioinformatics 35:1978. https://doi.org/10.1093/BIOINFORMATICS/BTY897

Article  CAS  PubMed  Google Scholar 

Da E, Rodrigues S, Griffith S et al (2022) Variant-level matching for diagnosis and discovery: challenges and opportunities. Hum Mutat. https://doi.org/10.1002/HUMU.24359

Article  Google Scholar 

National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 2023 Sept 19]. Available from: https://pubmed.ncbi.nlm.nih.gov/

Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517. https://doi.org/10.1093/NAR/GKI033

Article  CAS  PubMed  Google Scholar 

van Lint FHM, Mook ORF, Alders M et al (2019) Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance. Netherlands Hear J. https://doi.org/10.1007/s12471-019-1250-5

Article  Google Scholar 

Alfares AA, Kelly MA, McDermott G et al (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. https://doi.org/10.1038/gim.2014.205

Article  PubMed  Google Scholar 

Le Scouarnec S, Karakachoff M, Gourraud JB et al (2015) Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet 24:2757–2763. https://doi.org/10.1093/HMG/DDV036

Article  PubMed  Google Scholar 

Pugh TJ, Kelly MA, Gowrisankar S et al (2014) The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med 16:601–608. https://doi.org/10.1038/GIM.2013.204/ATTACHMENT/49FB8C1E-1712-4D23-AEB4-160959380105/MMC3.PDF

Article  CAS  PubMed  Google Scholar 

Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear Rhythm 8:1308–1339. https://doi.org/10.1016/J.HRTHM.2011.05.020

Article  Google Scholar 

Bai R, Napolitano C, Bloise R et al (2009) Yield of genetic screening in inherited cardiac channelopathies how to prioritize access to genetic testing. Circ Arrhythmia Electrophysiol 2:6–15. https://doi.org/10.1161/CIRCEP.108.782888

Article  CAS  Google Scholar 

Crotti L, Marcou CA, Tester DJ et al (2012) Spectrum and prevalence of mutations involving Br S1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol 60:1410–1418. https://doi.org/10.1016/J.JACC.2012.04.037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van DSL, Ommen SR, Tajik AJ et al (2005) Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc 80:739–744. https://doi.org/10.4065/80.6.739

Article  Google Scholar 

Van Spaendonck-Zwarts KY, Van Rijsingen IAW, Van Den Berg MP et al (2013) Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years’ experience. Eur J Heart Fail 15:628–636. https://doi.org/10.1093/EURJHF/HFT013

Article  PubMed  Google Scholar 

McKenna WJ, Judge DP (2020) Epidemiology of the inherited cardiomyopathies. Nat Rev Cardiol 181(18):22–36. https://doi.org/10.1038/s41569-020-0428-2

Article  Google Scholar 

Butters A, Lakdawala NK, Ingles J (2021) Sex differences in hypertrophic cardiomyopathy: interaction with genetics and environment. Curr Heart Fail Rep 18:264. https://doi.org/10.1007/S11897-021-00526-X

Article  PubMed  PubMed Central  Google Scholar 

Lakdawala NK, Olivotto I, Day SM et al (2021) Associations between female sex, sarcomere variants, and clinical outcomes in hypertrophic cardiomyopathy. Circ Genomic Precis Med 14:3062. https://doi.org/10.1161/CIRCGEN.120.003062

Article  CAS  Google Scholar 

Watkins H (2021) Time to think differently about sarcomere-negative hypertrophic cardiomyopathy. Circulation 143:2415–2417. https://doi.org/10.1161/CIRCULATIONAHA.121.053527

Article  PubMed  Google Scholar 

Van Der Crabben SN, Mörner S, Lundström AC et al (2022) Should variants of unknown significance (VUS) be disclosed to patients in cardiogenetics or not; only in case of high suspicion of pathogenicity? Eur J Hum Genet 30:1208–1210. https://doi.org/10.1038/s41431-022-01173-z

Article  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. https://doi.org/10.1038/gim.2015.30

Article  PubMed  PubMed Central  Google Scholar 

Landstrom AP, Kim JJ, Gelb BD et al (2021) Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the American Heart Association. Circ Genomic Precis Med 14:e000086. https://doi.org/10.1161/HCG.0000000000000086

Article  Google Scholar 

Arbustini E, Behr ER, Carrier L et al (2022) Interpretation and actionability of genetic variants in cardiomyopathies: a position statement from the European Society of Cardiology Council on cardiovascular genomics. Eur Heart J. https://doi.org/10.1093/EURHEARTJ/EHAB895

Article  PubMed  Google Scholar 

Walsh R, Lahrouchi N, Tadros R et al (2020) Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genet Med 231(23):47–58. https://doi.org/10.1038/s41436-020-00946-5

Article  CAS  Google Scholar 

VanDyke RE, Hashimoto S, Morales A et al (2021) Impact of variant reclassification in the clinical setting of cardiovascular genetics. J Genet Couns 30:503–512. https://doi.org/10.1002/JGC4.1336

Article  PubMed  Google Scholar 

Rehm HL, Berg JS, Brooks LD et al (2015) ClinGen — the clinical genome resource. N Engl J Med 372:2235–2242. https://doi.org/10.1056/NEJMSR1406261/SUPPL_FILE/NEJMSR1406261_DISCLOSURES.PDF

Article  CAS 

留言 (0)

沒有登入
gif