Hemorrhage at high altitude: impact of sustained hypobaric hypoxia on cerebral blood flow, tissue oxygenation, and tolerance to simulated hemorrhage in humans

Aguiar M, Stolzer A, Boyd DD (2017) Rates and causes of accidents for general aviation aircraft operating in a mountainous and high elevation terrain environment. Accid Anal Prev 107:195–201. https://doi.org/10.1016/j.aap.2017.03.017

Article  PubMed  Google Scholar 

Ainslie PN, Shaw AD, Smith KJ, Willie CK, Ikeda K, Graham J, Macleod DB (2014) Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci (lond) 126(9):661–670. https://doi.org/10.1042/CS20130343

Article  CAS  PubMed  Google Scholar 

Anderson GK, Rosenberg AJ, Barnes HJ, Bird J, Pentz B, Byman BRM, Jendzjowsky N, Wilson RJA, Day TA, Rickards CA (2021) Peaks and valleys: oscillatory cerebral blood flow at high altitude protects cerebral tissue oxygenation. Physiol Meas 42:064005. https://doi.org/10.1088/1361-6579/ac0593

Article  Google Scholar 

Barioni NO, Derakhshan F, Tenorio Lopes L, Onimaru H, Roy A, McDonald F, Scheibli E, Baghdadwala MI, Heidari N, Bharadia M, Ikeda K, Yazawa I, Okada Y, Harris MB, Dutschmann M, Wilson RJA (2022) Novel oxygen sensing mechanism in the spinal cord involved in cardiorespiratory responses to hypoxia. Sci Adv 8(12):eabm1444. https://doi.org/10.1126/sciadv.abm1444

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartsch P, Gibbs JS (2007) Effect of altitude on the heart and the lungs. Circulation 116(19):2191–2202. https://doi.org/10.1161/CIRCULATIONAHA.106.650796

Article  PubMed  Google Scholar 

Boyd J, Haegeli P, Abu-Laban RB, Shuster M, Butt JC (2009) Patterns of death among avalanche fatalities: a 21-year review. CMAJ 180(5):507–512. https://doi.org/10.1503/cmaj.081327

Article  PubMed  PubMed Central  Google Scholar 

Curran-Everett D (2020) Evolution in statistics: P values, statistical significance, kayaks, and walking trees. Adv Physiol Educ 44(2):221–224. https://doi.org/10.1152/advan.00054.2020

Article  PubMed  Google Scholar 

Curran-Everett D, Benos DJ (2004) Guidelines for reporting statistics in journals published by the American physiological society. Am J Physiol 287:R247-249. https://doi.org/10.1152/ajpregu.00346.2004

Article  CAS  Google Scholar 

Evans DH (1985) On the measurement of the mean velocity of blood flow over the cardiac cycle using Doppler ultrasound. Ultrasound Med Biol 11(5):735–741. https://doi.org/10.1016/0301-5629(85)90107-3

Article  CAS  PubMed  Google Scholar 

Heistad DD, Wheeler RC (1970) Effect of acute hypoxia on vascular responsiveness in man. I. Responsiveness to lower body negative pressure and ice on the forehead. II. Responses to norepinephrine and angiotensin. 3. Effect of hypoxia and hypocapnia. J Clin Invest 49(6):1252–1265. https://doi.org/10.1172/JCI106338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinojosa-Laborde C, Shade RE, Muniz GW, Bauer C, Goei KA, Pidcoke HF, Chung KK, Cap AP, Convertino VA (2014) Validation of lower body negative pressure as an experimental model of hemorrhage. J Appl Physiol 116(4):406–415. https://doi.org/10.1152/japplphysiol.00640.2013

Article  PubMed  Google Scholar 

Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 310(5):R398-413. https://doi.org/10.1152/ajpregu.00270.2015

Article  PubMed  Google Scholar 

Hoiland RL, Howe CA, Coombs GB, Ainslie PN (2018) Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 28(4):423–435. https://doi.org/10.1007/s10286-018-0522-2

Article  PubMed  Google Scholar 

Huang SY, Moore LG, McCullough RE, McCullough RG, Micco AJ, Fulco C, Cymerman A, Manco-Johnson M, Weil JV, Reeves JT (1987) Internal carotid and vertebral arterial flow velocity in men at high altitude. J Appl Physiol 63(1):395–400. https://doi.org/10.1152/jappl.1987.63.1.395

Article  CAS  PubMed  Google Scholar 

Jensen JB, Wright AD, Lassen NA, Harvey TC, Winterborn MH, Raichle ME, Bradwell AR (1990) Cerebral blood flow in acute mountain sickness. J Appl Physiol 69(2):430–433. https://doi.org/10.1152/jappl.1990.69.2.430

Article  CAS  PubMed  Google Scholar 

Johnson BD, van Helmond N, Curry TB, van Buskirk CM, Convertino VA, Joyner MJ (2014) Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses. J Appl Physiol 117(2):131–141. https://doi.org/10.1152/japplphysiol.00070.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kay VL, Rickards CA (2016) The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia. Am J Physiol Regul Integr Comp Physiol 310(4):R375-383. https://doi.org/10.1152/ajpregu.00367.2015

Article  PubMed  Google Scholar 

Kay VL, Sprick JD, Rickards CA (2017) Cerebral oxygenation and regional cerebral perfusion responses with resistance breathing during central hypovolemia. Am J Physiol Regul Integr Comp Physiol 313(2):R132–R139. https://doi.org/10.1152/ajpregu.00385.2016

Article  PubMed  Google Scholar 

Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27(4):484–492. https://doi.org/10.1172/JCI101995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lafave HC, Zouboules SM, James MA, Purdy GM, Rees JL, Steinback CD, Ondrus P, Brutsaert TD, Nysten HE, Nysten CE, Hoiland RL, Sherpa MT, Day TA (2019) Steady-state cerebral blood flow regulation at altitude: interaction between oxygen and carbon dioxide. Eur J Appl Physiol 119(11–12):2529–2544. https://doi.org/10.1007/s00421-019-04206-6

Article  CAS  PubMed  Google Scholar 

Lucas SJ, Burgess KR, Thomas KN, Donnelly J, Peebles KC, Lucas RA, Fan JL, Cotter JD, Basnyat R, Ainslie PN (2011) Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m. J Physiol 589(Pt 3):741–753. https://doi.org/10.1113/jphysiol.2010.192534

Article  CAS  PubMed  Google Scholar 

Millet GP, Debevec T (2020) CrossTalk proposal: barometric pressure, independent of P O 2, is the forgotten parameter in altitude physiology and mountain medicine. J Physiol 598(5):893–896. https://doi.org/10.1113/JP278673

Article  CAS  PubMed  Google Scholar 

Millet GP, Faiss R, Pialoux V (2012) Point: hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol 112(10):1783–1784. https://doi.org/10.1152/japplphysiol.00067.2012

Article  PubMed  Google Scholar 

Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52(6):456–466. https://doi.org/10.1016/j.pcad.2010.03.004

Article  PubMed  Google Scholar 

Naeije R, Melot C, Mols P, Hallemans R (1982) Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 82(4):404–410. https://doi.org/10.1378/chest.82.4.404

Article  CAS  PubMed  Google Scholar 

Pollard V, Prough DS, DeMelo AE, Deyo DJ, Uchida T, Stoddart HF (1996) Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo. Anesth Analg 82(2):269–277. https://doi.org/10.1097/00000539-199602000-00010

Article  CAS  PubMed  Google Scholar 

Rasmussen P, Siebenmann C, Diaz V, Lundby C (2013) Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation. Med Sci Sports Exerc 45(9):1767–1772. https://doi.org/10.1249/MSS.0b013e31829047e5

Article  PubMed  Google Scholar 

Richardson DW, Kontos HA, Raper AJ, Patterson JL Jr (1967) Modification by beta-adrenergic blockade of the circulatory respones to acute hypoxia in man. J Clin Invest 46(1):77–85. https://doi.org/10.1172/JCI105513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rickards CA (2015) Cerebral blood-flow regulation during hemorrhage. Compr Physiol 5(4):1585–1621. https://doi.org/10.1002/cphy.c140058

Article  PubMed  Google Scholar 

Rickards CA, Johnson BD, Harvey RE, Convertino VA, Joyner MJ (2015) Barnes JN (2015) Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans. J Appl Physiol (1985) 119(6):677–685. https://doi.org/10.1152/japplphysiol.00127.2015

Article  PubMed  Google Scholar 

Rowell LB, Blackmon JR (1986) Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am J Physiol 251(3 Pt 2):H562-570. https://doi.org/10.1152/ajpheart.1986.251.3.H562

Article  CAS  PubMed  Google Scholar 

Rowell LB, Seals DR (1990) Sympathetic activity during graded central hypovolemia in hypoxemic humans. Am J Physiol 259(4 Pt 2):H1197-1206. https://doi.org/10.1152/ajpheart.1990.259.4.H1197

Article  CAS  PubMed  Google Scholar 

Rupp T, Esteve F, Bouzat P, Lundby C, Perrey S, Levy P, Robach P, Verges S (2014) Cerebral hemodynamic and ventilatory responses to hypoxia, hypercapnia, and hypocapnia during 5 days at 4350 m. J Cereb Blood Flow Metab 34(1):52–60. https://doi.org/10.1038/jcbfm.2013.167

Article  CAS  PubMed  Google Scholar 

Schlittler M, Gatterer H, Turner R, Regli IB, Woyke S, Strapazzon G, Rasmussen P, Kob M, Mueller T, Goetze JP, Maillard M, van Hall G, Feraille E, Siebenmann C (2021) Regulation of plasma volume in male lowlanders during 4 days of exposure to hypobaric hypoxia equivalent to 3500 m altitude. J Physiol 599(4):1083–1096.

留言 (0)

沒有登入
gif