Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases

Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fortes AM, Pais MS (2015) Grape (Vitis species). Faculdade de Ciencias de Lisboa, Biosystems and Integrative Sciences Institute (BIOISI), Universidade de Lisboa, Campo Grande

Khan N, Fahad S, Naushad M, Faisal S (2020) Grape production critical review in the world. https://doi.org/10.2139/ssrn.3595842

APEDA (2023) 3rd Advance estimates of Agricultural and Processed Food Products Export Development Authority. https://apeda.gov.in/apedawebsite/SubHead_Products/Grapes.htm

NHB (2018) Horticulture statistics at a glance, Horticulture Statistics Division, National Horticulture Board, Department of Agriculture, Cooperation and Farmers’ Welfare, Ministry of Agriculture and Farmers’ Welfare, Government of India. http://nhb.gov.in/statistics/Publication/Horticulture%20At%20a %20Glance%202017%20for%20net%20uplod%20(2).pdf.

Jogaiah S, Oulkar DP, Vijapure AN, Maske SR, Sharma AK, Somkuwar RG (2017) Influence of canopy management practices on fruit composition of wine grape cultivars grown in semi-arid tropical region of India. Int J Enolgy Vitic 4:158–168

Google Scholar 

Volpi I, Guidotti D, Mammini M, Marchi S (2021) Predicting symptoms of downy mildew, powdery mildew, and gray mold diseases of grapevine through machine learning. Italian J Agromet 2:57–69

Article  Google Scholar 

Fedorina J, Tikhonova N, Ukhatova Y, Ivanov R, Khlestkina E (2022) Grapevine gene systems for resistance to gray mold Botrytis cinerea and powdery mildew Erysiphe necator. Agronomy 12:499

Article  CAS  Google Scholar 

Fan Y, Guo F, Wu R, Chen Z, Li Z (2023) First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi province. China Plant Dis 107:2249

Article  Google Scholar 

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

Article  PubMed  PubMed Central  Google Scholar 

Wu YY, Zhang TY, Zhang MY, Cheng J, Zhang YX (2018) An endophytic fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia 128:265–271. https://doi.org/10.1016/j.fitote.2018.05.033

Article  CAS  PubMed  Google Scholar 

Xie J, Wu YY, Zhang TY, Zhang MY, Peng F, Lin B, Zhang YX (2018) New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia 131:35–43. https://doi.org/10.1016/j.fitote.2018.10.006

Article  CAS  PubMed  Google Scholar 

Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. Mycorrhiza. Springer, Heidelberg, pp 281–306. https://doi.org/10.1007/978-3-540-78826-314

Book  Google Scholar 

Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

Google Scholar 

Burruano S, Alfonzo A, Lo Piccolo S, Conigliaro G, Mondello V, Torta L (2008) Interaction between Acremonium byssoides and Plasmopara viticola in Vitis vinifera. Phytopathol Mediterr 47:122–131. https://doi.org/10.14601/Phytopathol_Mediterr-2615

Article  Google Scholar 

Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopath 96:689–698. https://doi.org/10.1094/PHYTO-96-0689

Article  CAS  Google Scholar 

Musetti R, Polizzotto R, Vecchione A, Borselli S, Zulini L, D’Ambrosio M (2007) Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: an ultrastructural study. Micron 38:643–650. https://doi.org/10.1016/j.micron.2006.09.001

Article  CAS  PubMed  Google Scholar 

Polizzotto R, D’Agostin S, Grisan S, Assante G, Pertot I, Andersen B, Musetti R (2009) Activity of endophytic Alternaria spp. strains in the control of Plasmopara viticola. Plant Pathol J 91:79–80

Google Scholar 

Kortekamp A (1997) Epicoccum nigrum LINK: a biological control agent of Plasmopara viticola (BERK. et CURT.). Vitis 36:215–216

Google Scholar 

Bakshi S, Sztejnberg A, Yarden O (2001) Isolation and characterization of a cold-tolerant strain of Fusarium proliferatum, a biocontrol agent of grape downy mildew. Phytopathology 91:1062–1068. https://doi.org/10.1094/PHYTO.2001.91.11.1062

Article  CAS  PubMed  Google Scholar 

Banani H, Roatti B, Ezzahi B, Giovannini O, Gessler G, Pertot I, Perazzolli M (2014) Characterization of resistance mechanisms activated by Trichoderma harzianum T39 and benzothiadiazole to downy mildew in different grapevine cultivars. Plant Pathol 63:334–343. https://doi.org/10.1111/ppa.12089

Article  CAS  Google Scholar 

Woo SL, Ruocco M, Vinale F, Nigro M, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126. https://doi.org/10.2174/1874437001408010071

Article  Google Scholar 

Khan IH, Javaid A, Ahmed D (2021) Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Int J Agric Biol 25:888–894. https://doi.org/10.17957/IJAB/15.1743

Article  CAS  Google Scholar 

Zahavi T, Cohen L, Weiss B, Schena L, Daus A, Kaplunov T, Zutkhi J, Ben-Arie R, Droby S (2000) Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biol Technol 20:115–124. https://doi.org/10.1016/S0925-5214(00)00118-6

Article  Google Scholar 

Ciccarese F, Longo O, Ambrico A, Schiavone D, Ziadi T (2008) Use of Aphanocladium album (isolate Mx-95) in the control of pre-and postharvest grape rot diseases. Atti Gior Fitopatol Marzo 2006:443–448. https://doi.org/10.3390/su14052693

Article  Google Scholar 

Elmer PAG, Reglinski T (2006) Biosuppression of Botrytis cinerea in grapes. Plant Pathol 55:155–177. https://doi.org/10.1111/j.1365-3059.2006.01348.x

Article  Google Scholar 

Mantzoukas S, Lagogiannis I, Mpousia D, Ntoukas A, Karmakolia K, Eliopoulos PA, Poulas K (2021) Beauveria bassiana endophytic strain as plant growth promoter: the case of the grape vine Vitis vinifera. J Fungi 7:142. https://doi.org/10.3390/jof7020142

Article  CAS  Google Scholar 

Holkar SK, Ghotgalkar PS, Lodha TD, Bhanbhane VC, Shewale SA, Markad H, Shabeer AT, Saha S (2023) Biocontrol potential of endophytic fungi originated from grapevine leaves for management of anthracnose disease caused by Colletotrichum gloeosporioides. 3 Biotech 13:1–20. https://doi.org/10.1007/s13205-023-03675-z

Article  Google Scholar 

Holkar SK, Ghotgalkar PS, Shewale S, Bhanbhane VC, Saha S (2022) Identification and in-vitro efficacy of fungal endophytes isolated from grapevine cv. Manik Chaman for management of anthracnose and bacterial leaf spot diseases in grapes. In Proceedings of 8th International Conference (Hybrid Mode) on Plant Pathology: Retrospect and Prospects which was held at SKNAU, Jobner, Rajasthan from March 23–26, 2022, OP-10(3C):133.

Holkar SK, Patel DC, Ghuge G, Bagate SA, Gawande DN, Saha S (2023b) Characterization of bacterial endophytes isolated from different grapevine genotypes and their bio-efficacy against Colletotrichum gloeosporioides causing anthracnose disease. In proceedings of International Conference held at Pondicherry University, Pondicherry from February 13–15, OP-15.

Ghotgalkar PS, Bhanbhane VC, Holkar SK, Saha S, Shewale S (2021) Isolation, identification and in-vitro efficacy of fungal endophytes originating from grapevines for management of anthracnose disease (Colletotricum gleosporioides) in grapes. In proceedings of National Symposium held at College of Agriculture Latur, from 17–18 November, 2021, OP-56: pp. 193.

Ghotgalkar PS, Bhanbhane VC, Shewale S, Holkar SK, Saha S (2022) Molecular identification of fungal endophytes isolated from grapevine leaves for management of anthracnose disease in grapes. In proceedings of 8th International Conference (Hybrid Mode) on Plant Pathology: Retrospect and Prospects which was held at SKNAU, Jobner, Rajasthan from March 23–26, PP-149(3C):349.

Keller M (2020) The science of grapevines. Academic press, Cambridge

Google Scholar 

Armijo G, Espinoza C, Loyola R, Restovic F, Santibáñez C, Schlechter R, Agurto M, Arce-Johnson P (2016) Grapevine biotechnology: molecular approaches underlying abiotic and biotic stress responses. Grape Wine Biotechnol. https://doi.org/10.5772/64872

Article  Google Scholar 

Bettenfeld P, Canals JC, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Trouvelot CPE (2022) The microbiota of the grapevine holobiont: a key component of plant health. J Adv Res 40:1–15

Article  PubMed  Google Scholar 

Williamson B, Tudzynski B, Tudzynski P, Van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x

Article  CAS  PubMed  Google Scholar 

Vezzulli S, Gramaje D, Tello J, Gambino G, Bettinelli P, Pirrello C, Schwandner A, Barba P, Angelini E, Anfora G, Mazzoni V (2022) Genomic designing for biotic stress resistant grapevine. Genomic designing for biotic stress resistant fruit crops. Springer International Publishing, Cham, pp 87–255

Chapter  Google Scholar 

Maxmen A (2013) Crop pests: under attack. Nature 501:15-S17. https://doi.org/10.1038/501S15a

Article  ADS  CAS  Google Scholar 

Massi F, Torriani SF, Borghi L, Toffolatti SL (2021) Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 9(1):119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

Article  PubMed  PubMed Central  Google Scholar 

Chandrashekara KN, Manivannan S, Chandrashekara C, Chakravarthi M (2012) Biological control of plant diseases. Eco-friendly innovative approaches in plant disease management. International Book Distributors, New Delhi, pp 147–166

Google Scholar 

Ek-Ramos MJ, Zhou W, Valencia CU, Antwi JB, Kalns LL, Morgan GD (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS One 8:66049. https://doi.org/10.1371/journal.pone.0066049

Article  ADS  CAS  Google Scholar 

Oono R, Lefevre E, Simha A, Lutzoni F (2015) A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol 119:917–928. https://doi.org/10.1016/j.funbio.2015.07.003

Article  PubMed  PubMed Central  Google Scholar 

Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microb 8:325. https://doi.org/10.3389/fmicb.2017.00325

Article  Google Scholar 

Liu Y, Bai F, Li T, Yan H (2018) An endophytic strain of genus Paenibacillus isolated from the fruits of Noni (Morinda citrifolia L.) has antagonistic activity against a Noni’s pathogenic strain of genus Aspergillus. Microb Path 125:158–163. https://doi.org/10.1016/j.micpath.2018.09.018

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif