Degradation of Atrazine by an Anaerobic Microbial Consortium Enriched from Soil of an Herbicide-Manufacturing Plant

Tonelli Fernandes AF, Braz VS, Bauermeister A, Rizzato Paschoal JA, Lopes NP et al (2018) Degradation of atrazine by Pseudomonas sp. and Achromobacter sp. isolated from Brazilian agricultural soil. Int Biodeterior Biodegrad 130:17–22. https://doi.org/10.1016/j.ibiod.2018.03.011

Article  CAS  Google Scholar 

Khatoon H, Rai JPN (2020) Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology. Biotechnol Rep 26:e00459-10. https://doi.org/10.1016/j.btre.2020.e00459

Article  Google Scholar 

Sass JB, Colangelo A (2006) European union bans atrazine, while the United States negotiates continued use. Int J Occup Environ Health 12:260–267. https://doi.org/10.1179/oeh.2006.12.3.260

Article  CAS  PubMed  Google Scholar 

Mansee AH, Bakry N, Doaa MA (2017) Factors affecting potentials of certain bacterial isolates for atrazine bioremediation. Agric Eng Int 91–100. https://www.researchgate.net/publication/337657738

Pogrmic-Majkic K, Samardzija D, Stojkov-Mimic N, Vukosavljevic J, Trninic-Pjevic A et al (2018) Atrazine suppresses FSH-induced steroidogenesis and LH-dependent expression of ovulatory genes through PDE-cAMP signaling pathway in human cumulus granulosa cells. Mol Cell Endocrinol 461:79–88. https://doi.org/10.1016/j.mce.2017.08.015

Article  CAS  PubMed  Google Scholar 

Wirbisky SE, Weber GJ, Schlotman KE, Sepulveda MS, Freeman JL (2016) Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem Toxicol 98:25–33. https://doi.org/10.1016/j.fct.2016.03.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad AL, Tan LS, Shukor SR (2008) Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J Hazard Mater 151:71–77. https://doi.org/10.1016/j.jhazmat.2007.05.047

Article  CAS  PubMed  Google Scholar 

Kolekar PD, Patil SM, Suryavanshi MV, Suryawanshi SS, Khandare RV et al (2019) Microcosm study of atrazine bioremediation by indigenous microorganisms and cytotoxicity of biodegraded metabolites. J Hazard Mater 374:66–73. https://doi.org/10.1016/j.jhazmat.2019.01.023

Article  CAS  PubMed  Google Scholar 

He H, Liu Y, You S, Liu J, Xiao H et al (2019) A review on recent treatment technology for herbicide atrazine in contaminated environment. Int J Environ Res Public Health 16:5129–5117. https://doi.org/10.3390/ijerph16245129

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Souza ML, Wackett LP, Boundy-Mills KL, Mandelbaum RT, Sadowsky MJ (1995) Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. Appl Environ Microbiol 61:3373–3378. https://doi.org/10.1128/aem.61.9.3373-3378.1995

Article  ADS  PubMed  PubMed Central  Google Scholar 

Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter auresens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980. https://doi.org/10.1128/AEM.68.12.5973-5980.2002

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Li X, Li Y, Bao H, Nan J et al (2022) Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Front Microbiol 13:1103168. https://doi.org/10.3389/fmicb.2022.1103168

Article  PubMed  Google Scholar 

Han S, Tao Y, Cui Y, Xu J, Ju HJ et al (2023) Lanthanum-modified polydopamine loaded Acinetobacter lwoffii DNS32 for phosphate and atrazine removal: insights into co-adsorption and biodegradation mechanisms. Bioresour Technol 2368:128266. https://doi.org/10.1016/j.biortech.2022.128266

Article  CAS  Google Scholar 

Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375. https://doi.org/10.1128/AEM.64.9.3368-3375.1998

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dehghani M, Nasseri S, Amin S, Naddafee K, Taghavi M et al (2007) Isolation and identification of atrazine-degrading bacteria from corn field soil in Fars province of Iran. Pak J Biol Sci 10: 84–9. https://scialert.net/abstract/?doi=pjbs.2007.84.89

Mulbry WW, Zhu H, Nour SM, Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: cloning and construction of gene-specific primers. FEMS Microbiol Lett 206:75–79. https://doi.org/10.1111/j.1574-6968.2002.tb10989.x

Article  CAS  PubMed  Google Scholar 

Boundy-Mills KL, de Souza ML, Mandelbaum RT, Wackett LP, Sadowsky MJ (1997) The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl Environ Microbiol 63:916–923. https://doi.org/10.1128/aem.63.3.916-923.1997

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fruchey I, Shapir N, Sadowsky MJ, Wackett LP (2003) On the origins of cyanuric acid hydrolase: purification, substrates, and prevalence of AtzD from Pseudomonas sp strain ADP. Appl Environ Microbiol 69(6):3653–7. https://doi.org/10.1128/AEM.69.6.3653-3657.2003

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Shapir N, Sadowsky MJ, Wackett LP (2005) Purification and characterization of allophanate hydrolase (AtzF) from Pseudomonas sp. strain ADP. J Bacteriol 187:3731–8. https://doi.org/10.1128/JB.187.11.3731-3738.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagy I, Compernolle F, Ghys K, Vanderleyden J, De Mot R (1995) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol 61:2056–2060. https://doi.org/10.1128/aem.61.5.2056-2060.1995

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Masaphy S, Henis Y, Levanon D (1996) Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl Environ Microbiol 2:3587–3593. https://doi.org/10.1128/aem.62.10.3587-3593.1996

Article  ADS  Google Scholar 

Sadler EJ, Sudduth KA, Lerch RN, Baffaut C, Kitchen NR (2014) A simple index explains annual atrazine transport from surface runoff-prone watersheds in the north-central USA. Hydrolo Proce 28:210–217. https://doi.org/10.1002/hyp.9544

Article  ADS  Google Scholar 

Liu JW, Zhang X, Xu JY, Qiu JG, Zhu JC et al (2020) Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Sci Total Environ 748:141122. https://doi.org/10.1016/j.scitotenv.2020.141122

Article  ADS  CAS  PubMed  Google Scholar 

Sobczak P, Rosinska A (2020) Concentration of chosen organic micropollutants in surface water. Desalin Water Treat 199: 258–262. https://www.deswater.com/DWT_abstracts/vol_199/199_2020_258.pdf

Sáenz JS, Roldan F, Junca H, Arbeli Z (2019) Effect of the extraction and purification of soil DNA and pooling of PCR amplification products on the description of bacterial and archaeal communities. J Appl Microbiol 126:1454–1467. https://doi.org/10.1111/jam.14231

Article  CAS  PubMed  Google Scholar 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. https://www.nature.com/articles/nmeth.f.303

Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

Article  CAS  PubMed  Google Scholar 

Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10: 996–998. https://www.nature.com/articles/nmeth.2604

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633-642. https://doi.org/10.1093/nar/gkt1244

Article  CAS  PubMed  Google Scholar 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219

Article  CAS  PubMed  Google Scholar 

Song C, Wang B, Tan J, Zhu L, Lou D et al (2017) Comparative analysis of the gut microbiota of black bears in China using high-throughput sequencing. Mol Genet Genom 292:407–414. https://doi.org/10.1007/s00438-016-1282-0

Article  CAS  Google Scholar 

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh PK, Philip L (2004) Atrazine degradation in anaerobic environment by a mixed microbial consortium. Water Res 38:2276–83. https://doi.org/10.1016/j.watres.2003.10.059

Article  CAS  PubMed  Google Scholar 

Ra

留言 (0)

沒有登入
gif