Anaphylactic degranulation by mast cells requires the mobilization of inflammasome components

Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

Article  CAS  PubMed  Google Scholar 

Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 10, 417–426 (2002).

Article  CAS  PubMed  Google Scholar 

Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

Article  CAS  PubMed  Google Scholar 

Swanson, K. V., Deng, M. & Ting, J. P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chung, I.-C. et al. Pyk2 activates the NLRP3 inflammasome by directly phosphorylating ASC and contributes to inflammasome-dependent peritonitis. Sci. Rep. 6, 36214 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Guo, H., Callaway, J. B. & Ting, J. P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Wen, H., Ting, J. P.-Y. & O’Neill, L. A. A role for the NLRP3 inflammasome in metabolic diseases–did Warburg miss inflammation? Nat. Immunol. 13, 352–357 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeman, L. C. & Ting, J. P.-Y The pathogenic role of the inflammasome in neurodegenerative diseases. J. Neurochem. 136, 29–38 (2016).

Article  CAS  PubMed  Google Scholar 

Prochnicki, T. & Latz, E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 26, 71–93 (2017).

Article  CAS  PubMed  Google Scholar 

Hughes, M. M. & O’Neill, L. A. J. Metabolic regulation of NLRP3. Immunol. Rev. 281, 88–98 (2018).

Article  CAS  PubMed  Google Scholar 

Akira, S., Misawa, T., Satoh, T. & Saitoh, T. Macrophages control innate inflammation. Diabetes Obes. Metab. 15, 10–18 (2013).

Article  CAS  PubMed  Google Scholar 

Abraham, S. N. & St John, A. L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218–230 (2006).

Article  CAS  PubMed  Google Scholar 

Nakamura, Y. et al. Critical role for mast cells in interleukin-1beta-driven skin inflammation associated with an activating mutation in the nlrp3 protein. Immunity 37, 85–95 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin, C. et al. Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation. J. Clin. Invest. 127, 3913 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Hogan, P. G., Lewis, R. S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28, 491–533 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lorentz, A., Baumann, A., Vitte, J. & Blank, U. The SNARE machinery in mast cell secretion. Front. Immunol. 3, 143 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Dwyer, D. F., Barrett, N. A., Austen, K. F. & Immunological Genome Project Consortium Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 17, 878–887 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nocka, K. et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 9, 1805–1813 (1990).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcone, F. H., Wan, D., Barwary, N. & Sagi-Eisenberg, R. RBL cells as models for in vitro studies of mast cells and basophils. Immunol. Rev. 282, 47–57 (2018).

Article  CAS  PubMed  Google Scholar 

Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber, M., Hughes, M. R. & Krystal, G. Thapsigargin-induced degranulation of mast cells is dependent on transient activation of phosphatidylinositol-3 kinase. J. Immunol. 165, 124–133 (2000).

Article  CAS  PubMed  Google Scholar 

Stehlik, C. et al. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J. Immunol. 171, 6154–6163 (2003).

Article  CAS  PubMed  Google Scholar 

Byrne, M. J. et al. Nek7 conformational flexibility and inhibitor binding probed through protein engineering of the R-spine. Biochem. J. 477, 1525–1539 (2020).

Article  CAS  PubMed  Google Scholar 

He, H. et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 9, 2550 (2018).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Hara, H. et al. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat. Immunol. 14, 1247–1255 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okazaki, H., Zhang, J., Hamawy, M. M. & Siraganian, R. P. Activation of protein-tyrosine kinase Pyk2 is downstream of Syk in FcεRI signaling. J. Biol. Chem. 272, 32443–32447 (1997).

Article  CAS  PubMed  Google Scholar 

Cheung, S. M. & Ostergaard, H. L. Pyk2 controls integrin-dependent CTL migration through regulation of de-adhesion. J. Immunol. 197, 1945–1956 (2016).

Article  CAS  PubMed  Google Scholar 

Nishida, K. et al. FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 170, 115–126 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Draber, P., Sulimenko, V. & Draberova, E. Cytoskeleton in mast cell signaling. Front. Immunol. 3, 130 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Liu, Y., Zhu, M., Nishida, K., Hirano, T. & Zhang, W. An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. J. Exp. Med. 204, 93–103 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suurmond, J., Habets, K. L. L., Dorjee, A. L., Huizinga, T. W. & Toes, R. E. M. Expansion of Th17 cells by human mast cells is driven by inflammasome-independent IL-1beta. J. Immunol. 197, 4473–4481 (2016).

Article  CAS  PubMed  Google Scholar 

Kunder, C. A. et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455–2467 (2009).

留言 (0)

沒有登入
gif