Parkinson’s disease CA2-CA3 hippocampal atrophy is accompanied by increased cholinergic innervation in patients with normal cognition but not in patients with mild cognitive impairment

Aghourian, M., Legault-Denis, C., Soucy, J. P., Rosa-Neto, P., Gauthier, S., Kostikov, A., et al. (2017). Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Molecular Psychiatry, 22(11), 1531–1538. https://doi.org/10.1038/mp.2017.183

Article  CAS  PubMed  Google Scholar 

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007

Article  PubMed  Google Scholar 

Baiano, C., Barone, P., Trojano, L., & Santangelo, G. (2020). Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s Disease: A Meta-analysis. Movement Disorders, 35(1), 45–54. https://doi.org/10.1002/mds.27902

Article  PubMed  Google Scholar 

Barrett, M. J., Sperling, S. A., Blair, J. C., Freeman, C. S., Flanigan, J. L., Smolkin, M. E., et al. (2019). Lower volume, more impairment: Reduced cholinergic basal forebrain grey matter density is associated with impaired cognition in Parkinson disease. Journal of Neurology Neurosurgery & Psychiatry, 90(11), 1251–1256. https://doi.org/10.1136/jnnp-2019-320450

Article  Google Scholar 

Bartl, M., Dakna, M., Schade, S., Otte, B., Wicke, T., Lang, E., et al. (2022). Blood markers of inflammation, neurodegeneration, and Cardiovascular Risk in Early Parkinson’s Disease. Movement Disorders, 38(1), 68–81. https://doi.org/10.1002/mds.29257

Article  CAS  PubMed  Google Scholar 

Bedard, M. A., Pillon, B., Dubois, B., Duchesne, N., Masson, H., & Agid, Y. (1999). Acute and Long-Term Administration of Anticholinergics in Parkinson’s Disease: Specific effects on the Subcortico-Frontal Syndrome. Brain and Cognition, 40(2), 289–313. https://doi.org/10.1006/brcg.1999.1083

Article  CAS  PubMed  Google Scholar 

Berlot, R., Pirtošek, Z., Brezovar, S., Koritnik, B., Teipel, S. J., Grothe, M. J., & Ray, N. J. (2022). Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson’s disease. Brain Imaging and Behavior, 16(1), 118–129. https://doi.org/10.1007/s11682-021-00481-0

Article  PubMed  Google Scholar 

Carbon, M., Reetz, K., Ghilardi, M. F., Dhawan, V., & Eidelberg, D. (2010). Early Parkinson’s disease: Longitudinal changes in brain activity during sequence learning. Neurobiology of Disease, 37(2), 455–460. https://doi.org/10.1016/j.nbd.2009.10.025

Article  PubMed  Google Scholar 

Czubak, A., Nowakowska, E., Kus, K., Burda, K., Metelska, J., Baer-Dubowska, W., & Cichocki, M. (2009). Influences of chronic venlafaxine, olanzapine and nicotine on the hippocampal and cortical concentrations of brain-derived neurotrophic factor (BDNF). Pharmacological Reports: PR, 61(6), 1017–1023. https://doi.org/10.1016/s1734-1140(09)70163-x

Article  CAS  PubMed  Google Scholar 

Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (2001). The role of the striatum and hippocampus in planning: A PET activation study in Parkinson’s disease. Brain, 124(5), 1020–1032. https://doi.org/10.1093/brain/124.5.1020

Article  CAS  PubMed  Google Scholar 

Devignes, Q., Lopes, R., & Dujardin, K. (2022). Neuroimaging outcomes associated with mild cognitive impairment subtypes in Parkinson’s disease: A systematic review. Parkinsonism & Related Disorders, 95, 122–137. https://doi.org/10.1016/j.parkreldis.2022.02.006

Article  Google Scholar 

Dubois, B., Danzé, F., Pillon, B., Cusimano, G., Lhermitte, F., & Agid, Y. (1987). Cholinergic-dependent cognitive deficits in Parkinson’s disease. Annals of Neurology, 22(1), 26–30. https://doi.org/10.1002/ana.410220108

Article  CAS  PubMed  Google Scholar 

Froula, J. M., Henderson, B. W., Gonzalez, J. C., Vaden, J. H., Mclean, J. W., Wu, Y., et al. (2018). α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons. Acta Neuropathologica Communications, 6(1), 35. https://doi.org/10.1186/s40478-018-0537-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gan-Or, Z., Rao, T., Leveille, E., Degroot, C., Chouinard, S., Cicchetti, F., et al. (2020). The Quebec Parkinson Network: A researcher-patient matching platform and Multimodal Biorepository. Journal of Parkinson’s Disease, 10(1), 301–313. https://doi.org/10.3233/JPD-191775

Article  PubMed  PubMed Central  Google Scholar 

Gelfo, F., Mandolesi, L., Serra, L., Sorrentino, G., & Caltagirone, C. (2018). The neuroprotective effects of experience on cognitive functions: Evidence from Animal studies on the Neurobiological Bases of Brain Reserve. Neuroscience, 370, 218–235. https://doi.org/10.1016/j.neuroscience.2017.07.065

Article  CAS  PubMed  Google Scholar 

Hindle, J. V., Hurt, C. S., Burn, D. J., Brown, R. G., Samuel, M., Wilson, K. C., & Clare, L. (2016). The effects of cognitive reserve and lifestyle on cognition and dementia in Parkinson’s disease—a longitudinal cohort study. International Journal of Geriatric Psychiatry, 31(1), 13–23. https://doi.org/10.1002/gps.4284

Article  PubMed  Google Scholar 

Joelving, F. C., Billeskov, R., Christensen, J. R., West, M., & Pakkenberg, B. (2006). Hippocampal neuron and glial cell numbers in Parkinson’s disease—A stereological study. Hippocampus, 16(10), 826–833. https://doi.org/10.1002/hipo.20212

Article  CAS  PubMed  Google Scholar 

Kuhl, D. E., Minoshima, S., Fessler, J. A., Ficaro, E. P., Wieland, D. M., Koeppe, R. A., et al. (1996). In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Annals of Neurology, 40(3), 399–410. https://doi.org/10.1002/ana.410400309

Article  CAS  PubMed  Google Scholar 

Legault-Denis, C., Aghourian, M., Soucy, J. P., Rosa-Neto, P., Dagher, A., Aumont, E., et al. (2021). Normal cognition in Parkinson’s disease may involve hippocampal cholinergic compensation: An exploratory PET imaging study with [18F]-FEOBV. Parkinsonism & Related Disorders, 91, 162–166. https://doi.org/10.1016/j.parkreldis.2021.09.018

Article  CAS  Google Scholar 

Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349–356. https://doi.org/10.1002/mds.24893

Article  PubMed  PubMed Central  Google Scholar 

Massey, K. A., Zago, W. M., & Berg, D. K. (2006). BDNF up-regulates α7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Molecular and Cellular Neuroscience, 33(4), 381–388. https://doi.org/10.1016/j.mcn.2006.08.011

Article  CAS  PubMed  Google Scholar 

Nagano-Saito, A., Al-Azzawi, M. S., Hanganu, A., Degroot, C., Mejia-Constain, B., Bedetti, C., et al. (2016). Patterns of longitudinal neural activity linked to different cognitive profiles in Parkinson’s Disease. Frontiers in Aging Neuroscience, 8, 275. https://doi.org/10.3389/fnagi.2016.00275

Article  PubMed  PubMed Central  Google Scholar 

Nouraei, N., Mason, D. M., Miner, K. M., Carcella, M. A., Bhatia, T. N., Dumm, B. K., et al. (2018). Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Experimental Neurology, 299, 172–196. https://doi.org/10.1016/j.expneurol.2017.10.017

Article  CAS  PubMed  Google Scholar 

Pagonabarraga, J., Kulisevsky, J., Llebaria, G., García-Sánchez, C., Pascual-Sedano, B., & Gironell, A. (2008). Parkinson’s disease-cognitive rating scale: A new cognitive scale specific for Parkinson’s disease: Cognitive rating scale for PD. Movement Disorders, 23(7), 998–1005. https://doi.org/10.1002/mds.22007

Article  PubMed  Google Scholar 

Pang, C. C. C., Kiecker, C., O’Brien, J. T., Noble, W., & Chang, R. C. C. (2019). Ammon’s Horn 2 (CA2) of the Hippocampus: A long-known region with a new potential role in Neurodegeneration. The Neuroscientist, 25(2), 167–180. https://doi.org/10.1177/1073858418778747

Article  CAS  PubMed  Google Scholar 

Pasquini, J., Brooks, D. J., & Pavese, N. (2021). The cholinergic brain in Parkinson’s Disease. Movement Disorders Clinical Practice, 8(7), 1012–1026. https://doi.org/10.1002/mdc3.13319

Article  PubMed  PubMed Central  Google Scholar 

Pereira, J. B., Junqué, C., Bartrés-Faz, D., Ramírez-Ruiz, B., Marti, M. J., & Tolosa, E. (2013). Regional vulnerability of hippocampal subfields and memory deficits in Parkinson’s disease: Hippocampal subfields in PD. Hippocampus, 23(8), 720–728. https://doi.org/10.1002/hipo.22131

Article  PubMed  Google Scholar 

Pipitone, J., Park, M. T. M., Winterburn, J., Lett, T. A., Lerch, J. P., Pruessner, J. C., et al. (2014). Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage, 101, 494–512. https://doi.org/10.1016/j.neuroimage.2014.04.054

Article  PubMed  Google Scholar 

Ray, N. J., Bradburn, S., Murgatroyd, C., Toseeb, U., Mir, P., Kountouriotis, G. K., et al. (2018). In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain, 141(1), 165–176. https://doi.org/10.1093/brain/awx310

Article  PubMed  Google Scholar 

Rousset, O. G., Ma, Y., & Evans, A. C. (1998). Correction for partial volume effects in PET: Principle and validation. Journal of Nuclear Medicine: Official Publication Society of Nuclear Medicine, 39(5), 904–911.

CAS  PubMed  Google Scholar 

Shanks, H. R. C., Onuska, K. M., Barupal, D. K., Schmitz, T. W., & the Alzheimer’s Disease Metabolomics Consortium. (2022). for the Alzheimer’s Disease Neuroimaging Initiative, &. Serum unsaturated phosphatidylcholines predict longitudinal basal forebrain degeneration in Alzheimer’s disease. Brain Communications, 4(6), fcac318. https://doi.org/10.1093/braincomms/fcac318

Shimada, H., Hirano, S., Shinotoh, H., Aotsuka, A., Sato, K., Tanaka, N., et al. (2009). Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology, 73(4), 273–278. https://doi.org/10.1212/WNL.0b013e3181ab2b58

Article  CAS  PubMed  Google Scholar 

Sofroniew, M. V., Howe, C. L., & Mobley, W. C. (2001). Nerve growth factor signaling, Neuroprotection, and neural repair. Annual Review of Neuroscience, 24(1), 1217–1281. https://doi.org/10.1146/annurev.neuro.24.1.1217

Article  CAS  PubMed  Google Scholar 

van der Zee, S., Kanel, P., Gerritsen, M. J. J., Boertien, J. M., Slomp, A. C., Müller, M. L. T. M., et al. (2022). Altered cholinergic innervation in De Novo Parkinson’s Disease with and without cognitive impairment. Movement Disorders, 37(4), 713–723.

留言 (0)

沒有登入
gif