Strategies to utilize genome editing for increasing nitrogen use efficiency in crops

Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911. https://doi.org/10.1038/s41467-018-04252-2.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Aharoni A, Vorst O. DNA microarrays for functional plant genomics. Funct Genomics. 2002:99–118. https://doi.org/10.1007/978-94-010-0448-0_7.

Ahmed S, Zhang Y, Abdullah M, Ma Q, Wang H, Zhang P. Current status, challenges, and future prospects of plant genome editing in China. Plant Biotechnol Rep. 2019;13:459–72. https://doi.org/10.1007/s11816-019-00577-6.

Article  Google Scholar 

Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 2005;28(4):500–12. https://doi.org/10.1111/j.1365-3040.2005.01292.x.

Article  CAS  PubMed  Google Scholar 

Alfatih A, Wu J, Zhang ZS, Xia JQ, Jan SU, Yu LH, Xiang CB. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. J Exp Bot. 2020;71(19):6032–42. https://doi.org/10.1093/jxb/eraa292.

Article  CAS  PubMed  Google Scholar 

Ali A. Nitrate assimilation pathway in higher plants: Critical role in nitrogen signalling and utilization. Plant Sci Today. 2020; 7(2):182–92. https://doi.org/10.14719/pst.2020.7.2.637.

Andrews M, Raven JA, Lea PJ. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol. 2013;163(2):174–99. https://doi.org/10.1111/aab.12045.

Article  CAS  Google Scholar 

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57. https://doi.org/10.1038/s41586-019-1711-4.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Araus V, Vidal EA, Puelma T, Alamos S, Mieulet D, Guiderdoni E, Gutiérrez RA. Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. Plant Physiol. 2016;171(2):1523–32. https://doi.org/10.1104/pp.15.01731.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asmamaw MM. Viral vectors for the in vivo delivery of CRISPR components: advances and challenges. Front Bioeng Biotechnol. 2022;10: 895713. https://doi.org/10.3389/fbioe.2022.895713.

Article  Google Scholar 

Aulakh MS, Malhi SS. Interactions of nitrogen with other nutrients and water: effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution. Adv Agron. 2005;86:341–409. https://doi.org/10.1016/S0065-2113(05)86007-9.

Article  CAS  Google Scholar 

Azegami T, Yuki Y, Kiyono H. Plant-based mucosal vaccine delivery systems. In Mucosal Vaccines 2020; pp 357–370. Academic Press, New York. https://doi.org/10.1016/B978-0-12-811924-2.00020-1.

Bageshwar UK, Srivastava M, Pardha-Saradhi P, Paul S, Gothandapani S, Jaat RS, Shankar P, Yadav R, Biswas DR, Kumar PA, Padaria JC. An environmentally friendly engineered Azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield. Appl Environ Microbiol. 2017;83(15):e00590-e617. https://doi.org/10.1128/AEM.00590-17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baligar VC, Fageria NK, He ZL. Nutrient use efficiency in plants. Commun Soil Sci Plant Anal. 2001;32(7–8):921–50. https://doi.org/10.1081/CSS-100104098.

Article  CAS  Google Scholar 

Bao A, Liang Z, Zhao Z, Cai H. Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int J Mol Sci. 2015;16(5):9037–63. https://doi.org/10.3390/ijms16059037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barker AV, Pilbeam DJ, editors. Handbook of plant nutrition. CRC Press, Boca Raton; 2015. https://doi.org/10.1201/b18458

Beier MP, Obara M, Taniai A, Sawa Y, Ishizawa J, Yoshida H, Tomita N, Yamanaka T, Ishizuka Y, Kudo S, Yoshinari A. Lack of ACTPK 1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium. Plant J. 2018;93(6):992–1006. https://doi.org/10.1111/tpj.13824.

Article  CAS  PubMed  Google Scholar 

Bhattacharya D, Van Meir EG. A simple genotyping method to detect small CRISPR-Cas9 induced indels by agarose gel electrophoresis. Sci Rep. 2019;9(1):4437.

Article  ADS  PubMed  PubMed Central  Google Scholar 

BI YM, Kant S, Clark J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT. Increased nitrogen‐use efficiency in transgenic rice plants over‐expressing a nitrogen‐responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ. 2009; 32(12):1749–60. https://doi.org/10.1111/j.1365-3040.2009.02032.x.

Brauer EK, Rochon A, Bi YM, Bozzo GG, Rothstein SJ, Shelp BJ. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant. 2011;141(4):361–72. https://doi.org/10.1111/j.1399-3054.2011.01443.x.

Article  CAS  PubMed  Google Scholar 

Bueno Batista M, Dixon R. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem Soc Trans. 2019;47(2):603–14. https://doi.org/10.1042/BST20180342.

Article  PubMed  PubMed Central  Google Scholar 

Castro Marín I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta. 2011;233:539–52. https://doi.org/10.1007/s00425-010-1316-5.

Article  CAS  PubMed  Google Scholar 

Chardon F, Barthélémy J, Daniel-Vedele F, Masclaux-Daubresse C. Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot. 2010;61(9):2293–302. https://doi.org/10.1093/jxb/erq059.

Article  CAS  PubMed  Google Scholar 

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell. 2014;26(12):4636–55. https://doi.org/10.1105/tpc.114.129601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X. pOsNAR 2.1: Os NAR 2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J. 2017;15(10):1273–83. https://doi.org/10.1111/pbi.12714.

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X. Producing more grain with lower environmental costs. Nature. 2014;514(7523):486–9. https://doi.org/10.1038/nature13609.

Article  ADS  CAS  PubMed  Google Scholar 

Christie KA, Guo JA, Silverstein RA, Doll RM, Mabuchi M, Stutzman HE, Lin J, Ma L, Walton RT, Pinello L, Robb GB, Kleinstiver BP (2023) Precise DNA cleavage using CRISPR-SpRYgests. Nature Biotechnol. 2023;41(3);409–16.

Collins DE, Reuter JD, Rush HG, Villano JS. Viral vector biosafety in laboratory animal research. Comp Med. 2017;67(3):215–21.

CAS  PubMed  PubMed Central  Google Scholar 

Crawford NM, Glass AD. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 1998;3(10):389–95. https://doi.org/10.1016/S1360-1385(98)01311-9.

Article  Google Scholar 

Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 2018;36(9):882–97. https://doi.org/10.1016/j.tibtech.2018.03.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Darbani B, Farajnia S, Toorchi M, Zakerbosta S, Noeparvar S, Stewa CN. DNA-delivery methods to produce transgenic plants. Biotechnology (Faisalabad). 2008;7(3):385–402. https://doi.org/10.3923/biotech.2008.385.402.

Article  CAS  Google Scholar 

Datta SP, Meena MC. Micronutrients in soils and their management. Soil science: an introduction. New Delhi: Indian Society of Soil Science. 2015; 623–48.

Dawson JC, Huggins DR, Jones SS. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crop Res. 2008;107(2):89–101. https://doi.org/10.1016/j.fcr.2008.01.001.

Article  Google Scholar 

Department for Environment Food and Rural Affairs, “Game-changing Genetic Technology Bill Passes into Law in England,” March 24, 2023; United Kingdom Parliament, Genetic Technology (Precision Breeding) Act 2023. https://bills.parliament.uk/bills/3167.

Deshpande D, Chhugani K, Chang Y, Karlsberg A, Loeffler C, Zhang J, Muszyńska A, Munteanu V, Yang H, Rotman J, Tao L. RNA-seq data science: from raw data to effective interpretation. Front Genet. 2023;14: 997383. https://doi.org/10.3389/fgene.2023.997383.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dwivedi BS, Shukla AK, Singh VK, Yadav RL. Improving nitrogen and phosphorus use efficiencies through inclusion of forage cowpea in the rice–wheat systems in the Indo-Gangetic Plains of India. Field Crop Res. 2003;80(3):167–93. https://doi.org/10.1016/S0378-4290(02)00169-7.

Article  Google Scholar 

EFSA Panel on Genetically Modified Organisms (EFSA GMO Panel), Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E. Applicability of the EFSA Opinion on site‐directed nucleases type 3 for the safety assessment of plants developed using site‐directed nucleases type 1 and 2 and oligonucleotide‐directed mutagenesis. EFSA J. 2020;18(11):e06299. https://doi.org/10.2903/j.efsa.2020.6299.

Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G. Plant nitrate transporters: from gene function to application. J Exp Bot. 2017;68(10):2463–75. https://doi.org/10.1093/jxb/erx011.

Article  CAS  PubMed  Google Scholar 

Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci. 2016;113(26):7118–23. https://doi.org/10.1073/pnas.1525184113.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fang Z, Wu B, Ji Y. The amino acid transporter OsAAP4 contributes to rice tillering and grain yield by regulating neutral amino acid allocation through two splicing variants. Rice. 2021;14:1–7. https://doi.org/10.1186/s12284-020-00446-9.

Article  CAS 

留言 (0)

沒有登入
gif