Unlocking the Potential of Brusatol as an Antitumoral Agent: Molecular Mechanisms and Therapeutic Benefits

Adhikari K, Kunwar RM, Jan HA, Bussmann RW, Paniagua-Zambrana NY (2021) Brucea javanica (L.) Merr. Simaroubaceae. In: Kunwar RM, Sher H, Bussmann RW (eds) Ethnobotany of the Himalayas. Ethnobotany of mountain regions. Springer, Cham, 1–8. https://doi.org/10.1007/978-3-030-45597-2_205-1

Al Gailani M, Liu M, Wen J (2022) Ligands for oral delivery of peptides across the blood-brain-barrier. Acta Materia Medica 1:106–123. https://doi.org/10.15212/amm-2021-0007

Article  Google Scholar 

Arora S, Behl T, Mehndiratta S (2021) Plant-derived anti-malarial compounds and their derivatives as anticancer agents: future perspectives. Arora S (ed) Metastatic diseases: novel approaches in diagnosis and therapeutic management, 1st edn. Apple Academic Press, USA, pp 179-196

Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, Mateo GG (2019) Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front Pharmacol 10:715. https://doi.org/10.3389/FPHAR.2019.00715

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballout F, Lu H, Chen Z, Hu T, Chen L, Washington MK, El-Rifai W, Peng D (2022) Targeting NRF2 sensitizes esophageal adenocarcinoma cells to cisplatin through induction of ferroptosis and apoptosis. Antioxidants 11:1859. https://doi.org/10.3390/antiox11101859

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beyer K, Baukloh AK, Stoyanova A, Kamphues C, Sattler A, Kotsch K (2019) Interactions of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) with the immune system: Implications for inflammation and cancer. Cancers 11:1161. https://doi.org/10.3390/cancers11081161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boice A, Bouchier-Hayes L (2020) Targeting apoptotic caspases in cancer. Biochim Biophys Acta Mol Cell Res 1867:118688. https://doi.org/10.1016/j.bbamcr.2020.118688

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai SJ, Liu Y, Han S, Yang C (2019) Brusatol, an NRF2 inhibitor for future cancer therapeutic. Cell Biosci 9:45. https://doi.org/10.1186/s13578-019-0309-8

Article  PubMed  PubMed Central  Google Scholar 

Chaffer CL, San Juan BP, Lim E, Weinberg RA (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35:645–654. https://doi.org/10.1007/s10555-016-9648-7

Article  PubMed  Google Scholar 

Chandrasekaran J, Balasubramaniam J, Sellamuthu A, Ravi A (2021) An in vitro study on the reversal of epithelial to mesenchymal transition by brusatol and its synergistic properties in triple-negative breast cancer cells. J Pharm Pharmacol 73:749–757. https://doi.org/10.1093/jpp/rgab018

Article  PubMed  Google Scholar 

Chen X, Yin T, Zhang B, Sun B, Chen J, Xiao T, Wang B, Li M, Yang J, Fan X (2020) Inhibitory effects of brusatol delivered using glycosaminoglycan-placental chondroitin sulfate A-modified nanoparticles on the proliferation, migration and invasion of cancer cells. Int J Mol Med 46:817–827. https://doi.org/10.3892/ijmm.2020.4627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, He B, Zhao J, Li J, Zhu Y, Li L, Bao W, Zheng J, Yu H, Chen G (2022) Brusatol suppresses the growth of intrahepatic cholangiocarcinoma by PI3K/Akt pathway. Phytomedicine 104:154323. https://doi.org/10.1016/j.phymed.2022.154323

Article  CAS  PubMed  Google Scholar 

Cheng C, Yuan F, Chen XP, Zhang W, Zhao XL, Jiang ZP, Zhou HH, Zhou G, Cao S (2021) Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother 142:111652. https://doi.org/10.1016/j.biopha.2021.111652

Article  CAS  PubMed  Google Scholar 

Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. J Nat Prod 67:269–272. https://doi.org/10.1021/np030304

Article  CAS  PubMed  Google Scholar 

Elgebaly SA, Hall IH, Lee KH, Sumida Y, Imakura Y, Wu RY (1979) Antitumor agents XXXV: effects of brusatol, bruceoside A, and bruceantin on P-388 Lymphocytic leukemia cell respiration. J Pharm Sci 68:887–890. https://doi.org/10.1002/JPS.2600680727

Article  Google Scholar 

Guo N, Zhang X, Bu F, Wang L, Cao Z, Geng C, Guo R, Ren D, Wen Q (2017) Determination of brusatol in plasma and tissues by LC–MS method and its application to a pharmacokinetic and distribution study in mice. J Chromatogr B Analyt Technol Biomed Life Sci 1053:20–26. https://doi.org/10.1016/J.JCHROMB.2017.04.012

Article  CAS  PubMed  Google Scholar 

Guo N, Xu X, Yuan G, Chen X, Wen Q, Guo R (2018) Pharmacokinetic, metabolic profiling and elimination of brusatol in rats. Biomed Chromatogr 32:e4358. https://doi.org/10.1002/BMC.4358

Article  PubMed  Google Scholar 

Guo SB, Huang WJ, Tian XP (2022) Brusatol modulates diverse cancer hallmarks and signaling pathways as a potential cancer therapeutic. Acta Materia Medica 1:278–301. https://doi.org/10.15212/amm-2022-0014

Article  Google Scholar 

Guo Z, Li N, Jiang Y, Zhang L, Tong L, Wang Y, Lv P, Li X, Han C, Lin J (2023) HOXB9 a miR-122–5p regulated gene, suppressed the anticancer effects of brusatol by upregulating SCD1 expression in melanoma. Biomed Pharmacother 162:114650. https://doi.org/10.1016/j.biopha.2023.114650

Article  CAS  PubMed  Google Scholar 

Hanssen KM, Haber M, Fletcher JI (2021) Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: beyond pharmacological inhibition. Drug Resist Updat 59:100795. https://doi.org/10.1016/J.DRUP.2021.100795

Article  CAS  PubMed  Google Scholar 

He T, Zhou F, Su A, Zhang Y, Xing Z, Mi L, Li Z, Wu W (2023) Brusatol: a potential sensitizing agent for cancer therapy from Brucea javanica. Biomed Pharmacother 158:114134. https://doi.org/10.1016/J.BIOPHA.2022.114134

Article  CAS  PubMed  Google Scholar 

Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S (2015) EMT and tumor metastasis. Clin Transl Med 4:6. https://doi.org/10.1186/S40169-015-0048-3

Article  PubMed  PubMed Central  Google Scholar 

Huang QH, Zhang J, Cho WCS, Huang Y, Yang W, Zuo Z, Xian Y, Lin ZX (2023) Brusatol suppresses the tumor growth and metastasis of colorectal cancer via upregulating ARRDC4 expression through modulating PI3K/YAP1/TAZ Pathway. Phytomedicine 109:154567. https://doi.org/10.1016/j.phymed.2022.154567

Article  CAS  PubMed  Google Scholar 

Jeengar MK, Kumar S, Shrivastava S, Syamprasad NP, Katanaev VL, Uppugunduri S, Naidu VGM (2020) Niclosamide exerts anti-tumor activity through generation of reactive oxygen species and by suppression of Wnt/ β-catenin signaling axis in HGC-27 MKN-74 human gastric cancer cells. Asia-Pac J Oncol 1:18–30. https://doi.org/10.32948/ajo.2020.08.06

Jha V, Dinesh TA, Nair P (2021) Cancer - too costly to cure? Cancer Res Stat Treat 4:173–174. https://doi.org/10.4103/CRST.CRST_30_21

Article  Google Scholar 

Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F (2023) Drug-induced oxidative stress in cancer treatments: angel or devil? Redox Biol 63:102754. https://doi.org/10.1016/j.redox.2023.102754

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krajka-Kuźniak V, Baer-Dubowska W (2021) Modulation of Nrf2 and NF-κB signaling pathways by naturally occurring compounds in relation to cancer prevention and therapy Are combinations better than single compounds? Int J Mol Sci 22:8223. https://doi.org/10.3390/ijms22158223

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R, Harilal S, Parambi DGT, Narayanan SE, Uddin MdS, Marathakam A, Jose J, Mathew GE, Mathew B (2021) Fascinating chemopreventive story of wogonin: a chance to hit on the head in cancer treatment. Curr Pharm Des 27:467–478. https://doi.org/10.2174/1385272824999200427083040

Article  CAS  PubMed  Google Scholar 

Kumar M, Kaur V, Kumar S, Kaur S (2016) Phytoconstituents as apoptosis inducing agents: strategy to combat cancer. Cytotechnology 68:531–563. Springer Netherlands. https://doi.org/10.1007/s10616-015-9897-2

Kunheri B, Vijaykumar DK (2021) Management of early stage breast cancer. Springer Nature

Lee JH, Rangappa S, Mohan CD, Basappa Sethi G, Lin ZX, Mohan CD, Rangappa KS, Ahn KS (2019) Brusatol, a nrf2 inhibitor targets stat3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules 9:550. https://doi.org/10.3390/biom9100550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Mohan CD, Deivasigamani A, Jung YY, Rangappa S, Basappa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Garg M, Lin ZX, Rangappa KS, Sethi G, Hui KM, Ahn KS (2020) Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J Adv Res 26:83–94. https://doi.org/10.1016/J.JARE.2020.07.004

Article  PubMed  PubMed Central  Google Scholar 

Liang X, Wang R (2021) The Nrf2 inhibitor brusatol has a protective role in a rat model of oxygen-induced retinopathy of prematurity. Vis Neurosci 38:E002. https://doi.org/10.1017/S095252382100002X

Article  PubMed  Google Scholar 

Lu Z, Lai ZQ, Leung AWN, Leung PS, Li ZS, Lin ZX (2017) Exploring brusatol as a new anti-pancreatic cancer adjuvant: biological evaluation and mechanistic studies. Oncotarget 8:84974–84985

Article  PubMed  PubMed Central  Google Scholar 

Ma R, Li H, Zhang Y, Lin Y, Qiu X, Xie M, Yao B (2017) The toxic effects and possible mechanisms of brusatol on mouse oocytes. PLoS One 12:e0177844. https://doi.org/10.1371/JOURNAL.PONE.0177844

Article  PubMed  PubMed Central  Google Scholar 

Mata-Greenwood E, Cuendet M, Sher D, Gustin D, Stock W, Pezzuto JM (2002) Brusatol-mediated induction of leukemic cell differentiation and G(1) arrest is associated with down-regulation of c-myc. Leukemia 16:2275–2284. https://doi.org/10.1038/SJ.LEU.2402696

Article  CAS  PubMed  Google Scholar 

Matthews HK, Bertoli C, De Bruin RA (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23:74–88. https://doi.org/10.1038/s41580-021-00404-3

Article 

留言 (0)

沒有登入
gif