Chemical Constituents and Anti-inflammatory, Antinociceptive, and Antioxidant Activities of Salvia melissiflora Aerial Parts

Almanza G, Balderrama L, Labbé C, Lavaud C, Massiot G, Nuzillard J, Cannoly JD, Farugia LJ, Rycroft DS (1997) Clerodane diterpenoids and an ursane triterpenoid from Salvia haenkei. Comput-Assist Struct Elucidation Tetrahedron 53:14719–14728. https://doi.org/10.1016/S0040-4020(97)00943-5

Article  CAS  Google Scholar 

Areti A, Komirishetty P, Kalvala AK, Nellaiappan K, Kumar A (2018) Rosmarinic acid mitigates mitochondrial dysfunction and spinal glial activation in oxaliplatin-induced peripheral neuropathy. Mol Neurobiol 55:7463–7475. https://doi.org/10.1007/s12035-018-0920-4

Article  CAS  PubMed  Google Scholar 

Azevedo LF, Silva SMD, Navarro LB, Yamaguchi LF, Nascimento CGO, Soncini R, Ishikawa T (2016) Evidence of anti-inflammatory and antinociceptive activities of Plinia edulis leaf infusion. J Ethnopharmacol 192:178–182. https://doi.org/10.1016/j.jep.2016.07.001

Article  CAS  PubMed  Google Scholar 

Bhat RA, Lingaraju MC, Pathak NN, Kalra J, Kumar D, Kumar D, Tandan SK (2016) Effect of ursolic acid in attenuating chronic constriction injury-induced neuropathic pain in rats. Fundam Clin Pharmacol 30:517–528. https://doi.org/10.1111/fcp.12223

Article  CAS  PubMed  Google Scholar 

Bisio A, Shito AM, Parricchi A, Mele G, Romussi G, Malafronte N, Oliva P, Tommasi N (2015) Antibacterial activity of constituents from Salvia buchananii Hedge (Lamiaceae). Phytochem Lett 14:170–177. https://doi.org/10.1016/j.phytol.2015.10.005

Article  CAS  Google Scholar 

Boonyarikpunchai W, Sukrong S, Towiwat P (2014) Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacol Biochem Behav 124:67–73. https://doi.org/10.1016/j.pbb.2014.05.004

Article  CAS  PubMed  Google Scholar 

Borgonetti V, Galeotti N (2022) Rosmarinic acid reduces microglia senescence: a novel therapeutic approach for the management of neuropathic pain symptoms. Biomedicines 10:1468. https://doi.org/10.3390/biomedicines10071468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dais P, Plessel R, Williamson K, Hatzakis E (2017) Complete 1H and 13C NMR assignment and 31P NMR determination of pentacyclic triterpenic acids. Anal Methods 9:949–957. https://doi.org/10.1039/C6AY02565J

Article  CAS  Google Scholar 

El Gabbas Z, Bezza K, Laadraoui J, Ait Laaradia M, Kebbou A, Oufquir S, Boukhira A, Aboufatima R, Chait A (2019) Salvia officinalis, rosmarinic and caffeic acids attenuate neuropathic pain and improve function recovery after sciatic nerve chronic constriction in mice. Evid Based Complement Alternat Med 24:1702378. https://doi.org/10.1155/2019/1702378

Article  Google Scholar 

Fragoso-Cerrano M, Ortiz-Pastrana N, Luna-Cruz N, Toscano RA, Alpuche-Solís AG, Ortega A, Bautista E (2019) Amarisolide F, an acylated diterpenoid glucoside and related terpenoids from Salvia amarissima. J Nat Prod 85:631–635. https://doi.org/10.1021/acs.jnatprod.8b00565

Article  CAS  Google Scholar 

Guan H, Luo W, Bao B, Cao Y, Cheng F, Yu S, Fan Q, Zhang L, Wu Q, Shan M (2022) A comprehensive review of rosmarinic acid: from phytochemistry to pharmacology and its new insight. Molecules 27:3292. https://doi.org/10.3390/molecules27103292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guginski G, Luiz AP, Silva MD, Massaro M, Martins DF, Chaves J, Mattos RW, Silveira D, Ferreira VM, Calixto JB, Santos AR (2009) Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol Biochem Behav 93:10–16. https://doi.org/10.1016/j.pbb.2009.03.014

Article  CAS  PubMed  Google Scholar 

Huang W-Y, Cai Y-Z, Zhang Y (2009) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. https://doi.org/10.1080/01635580903191585

Article  Google Scholar 

Jassbi AR, Zare S, Firuzi O, Xiao J (2016) Bioactive phytochemicals from shots and roots of Salvia species. Phytochem Rev 15:823–867. https://doi.org/10.3390/molecules24234327

Article  CAS  Google Scholar 

Kassuya CAL, Wisniewski JRA, Simionatto EL, Santos EP, Stefanello MEA (2009) Composição dos o1éos essenciais de Salvia lachnostachys e S. melissiflora (Lamiaceae). Lat Am J Pharm 28:919–921

CAS  Google Scholar 

Kim KA, Lee JS, Park HJ, Kim JW, Kim CJ, Shim IS, Kim NJ, Han SM, Lim S (2004) Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sci 74:2769–2779. https://doi.org/10.1016/j.lfs.2003.10.020

Article  CAS  PubMed  Google Scholar 

Kuhnt M, Ripler H, Heinrich M (1994) Lignans and other compounds from the mixed Indian medicinal plant Hyptis verticillata. Phytochemistry 36:485–489. https://doi.org/10.1016/S0031-9422(00)97101-2

Article  CAS  Google Scholar 

Kuraoka-Oliveira ÂM, Radai JAS, Leitão MM, Lima Cardoso CA, Silva-Filho SE, Leite Kassuya CA (2020) Anti-inflammatory and anti-arthritic activity in extract from the leaves of Eriobotrya japonica. J Ethnopharmacol 249:112418. https://doi.org/10.1016/j.jep.2019.112418

Article  CAS  PubMed  Google Scholar 

Li R, Morris-Natschke SL, Lee K (2015) Clerodane diterpenes: sources, structure, and biological activities. Nat Prod Rep 33:1166–1226. https://doi.org/10.1039/c5np00137d

Article  CAS  Google Scholar 

Lomba LA, Cruz JV, Coelho LCM, Leite-Avalca MCG, Correia D, Zampronio AR (2021) Role of central endothelin-1 in hyperalgesia, anhedonia, and hypolocomotion induced by endotoxin in male rats. Exp Brain Res 239:267–277. https://doi.org/10.1007/s00221-020-05929-1

Article  CAS  PubMed  Google Scholar 

Lomba LA, Vogt PH, Souza VEP, Leite-Avalca MCG, Verdan MH, Stefanello MEA, Zampronio AR (2017) A naphthoquinone from Sinningia canescens inhibits inflammation and fever in mice. Inflammation 40:1051–1061. https://doi.org/10.1007/s10753-017-0548-y

Article  CAS  PubMed  Google Scholar 

Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X (2020) Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 397:115014. https://doi.org/10.1016/j.taap.2020.115014

Article  CAS  PubMed  Google Scholar 

Olea RSG, Roque NF (1990) Análise de misturas de triterpenos por RMN de 13C. Quim Nova 13:278–281

CAS  Google Scholar 

Oliveira CS, Alvarez CJ, Cabral MRP, Sarragiotto MH, Salvador MJ, Stefanello MEA (2022) Three new diterpenoids from the leaves of Salvia lachnostachys. Nat Prod Res 36:5600–5605. https://doi.org/10.1080/14786419.2021.2022668

Article  CAS  Google Scholar 

Oliveira AB, Antar GM, Mota MCA, Pastore JFB (2023) Salvia in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. https://floradobrasil.jbrj.gov.br/FB8330. Accessed 11 June 2023

Ortega A, Cardenas J, Toscano A, Maldonato E, Aumelas A, Calsteren MRV, Jankowski C (1991) Salviandulines A and B. Two secoclerodanes diterpenoids from Salvia lavanduloides. Phytochemistry 30:3357–3360. https://doi.org/10.1016/0031-9422(91)83209-4

Article  CAS  Google Scholar 

Ortiz-Mendoza N, Aguirre-Hernández E, Martínez-Fragoso I, González-Trujano ME, Basurto-Peña FA, Martínez-Gordillo MJ (2022) A review on the ethnopharmacology and phytochemistry of the neotropical sages (Salvia subgenus Calosphace; Lamiaceae) emphasizing Mexican species. Front Pharmacol 13:867892. https://doi.org/10.3389/fphar.2022.867892

Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampschwoodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC-FL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279. https://doi.org/10.1021/jf0262256

Article  CAS  PubMed  Google Scholar 

Qasaymeh RM, Rotondo D, Seidel V (2023) Phytochemical study and immunomodulatory activity of Fraxinus excelsior L. J Pharm Pharmacol 75:117–128. https://doi.org/10.1093/jpp/rgac076

Article  PubMed  Google Scholar 

Rahbardar MG, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H (2018) Rosmarinic acid attenuates development and existing pain in a rat model of neuropathic pain: an evidence of anti-oxidative and anti-inflammatory effects. Phytomedicine 40:59–67. https://doi.org/10.1016/j.phymed.2018.01.001

Article  CAS  PubMed  Google Scholar 

Rahbardar MG, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H (2017) Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 86:441–449. https://doi.org/10.1016/j.biopha.2016.12.049

Article  CAS  Google Scholar 

Rodrigues MR, Kanazawa LK, das Neves TL, da Silva CF, Horst H, Pizzolatti MG, Santos AR, Baggio CH, Werner MF (2012) Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol 139:519-526. https://doi.org/10.1016/j.jep.2011.11.042

Silva RHM, Lima NFM, Lopes AJO, Vasconcelos CC, de Mesquita JWC, de Mesquita LSS, Lima FCVM, Ribeiro MNS, Ramos RM, Cartágenes MDSS, Garcia JBS (2017) Antinociceptive activity of Borreria verticillata: in vivo and in silico studies. Front Pharmacol 8:283. https://doi.org/10.3389/fphar.2017.00283

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547. https://doi.org/10.3181/00379727-111-27849

Article  CAS  PubMed  Google Scholar 

Yu Y, Li Y, Qi K, Xu W, Wei Y (2022) Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway. Behav Brain Res 433:114006. https://doi.org/10.1016/j.bbr.2022.114006

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif