Lactate in breast cancer cells is associated with evasion of hypoxia-induced cell cycle arrest and adverse patient outcome

Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, Kshitiz. Systems biology of cancer metastasis. Cell Syst. 2019. https://doi.org/10.1016/J.CELS.2019.07.003.

Article  PubMed  PubMed Central  Google Scholar 

Kennel KB, Burmeister J, Schneider M, Taylor CT. The PHD1 oxygen sensor in health and disease. J Physiol. 2018. https://doi.org/10.1113/JP275327.

Article  PubMed  PubMed Central  Google Scholar 

Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010. https://doi.org/10.1038/ONC.2009.441.

Article  PubMed  Google Scholar 

Liao C, Zhang Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases. Am J Pathol. 2020. https://doi.org/10.1016/J.AJPATH.2020.04.003.

Article  PubMed  PubMed Central  Google Scholar 

Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993. https://doi.org/10.1073/PNAS.90.9.4304.

Article  PubMed  PubMed Central  Google Scholar 

Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006. https://doi.org/10.1016/J.CMET.2006.02.002.

Article  PubMed  PubMed Central  Google Scholar 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014. https://doi.org/10.1038/NATURE13490.

Article  PubMed  PubMed Central  Google Scholar 

Kirito K, Hu Y, Komatsu N. HIF-1 prevents the overproduction of mitochondrial ROS after cytokine stimulation through induction of PDK-1. Cell Cycle. 2009. https://doi.org/10.4161/CC.8.17.9544.

Article  PubMed  Google Scholar 

Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 2010. https://doi.org/10.1073/PNAS.0914433107.

Article  PubMed  PubMed Central  Google Scholar 

Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase a: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018. https://doi.org/10.1002/CAM4.1820.

Article  PubMed  PubMed Central  Google Scholar 

Manzoor AA, Schroeder T, Dewhirst MW. One-stop-shop tumor imaging: buy hypoxia, get lactate free. J Clin Invest. 2008. https://doi.org/10.1172/JCI35543.

Article  PubMed  PubMed Central  Google Scholar 

Kshitiz AJ, Suhail Y, Chang H, Hubbi ME, Hamidzadeh A, Goyal R, Liu Y, Sun P, Nicoli S, Dang CV, Levchenko A. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Syst. 2022. https://doi.org/10.1016/J.CELS.2022.11.003.

Article  PubMed  PubMed Central  Google Scholar 

Ordway B, Gillies RJ, Damaghi M. Extracellular acidification induces lysosomal dysregulation. Cells. 2021. https://doi.org/10.3390/CELLS10051188.

Article  PubMed  PubMed Central  Google Scholar 

Brisson L, Bański P, Sboarina M, Dethier C, Danhier P, Fontenille MJ, Van Hée VF, Vazeille T, Tardy M, Falces J, Bouzin C, Porporato PE, Frédérick R, Michiels C, Copetti T, Sonveaux P. Lactate dehydrogenase b controls lysosome activity and autophagy in cancer. Cancer Cell. 2016. https://doi.org/10.1016/J.CCELL.2016.08.005.

Article  PubMed  Google Scholar 

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019. https://doi.org/10.1038/s41587-019-0201-4.

Article  PubMed  PubMed Central  Google Scholar 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence Alignment/Map format and SAMtools. Bioinform. 2009. https://doi.org/10.1093/BIOINFORMATICS/BTP352.

Article  Google Scholar 

Liao Y, Smyth GK, Shi W. Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinform. 2014. https://doi.org/10.1093/BIOINFORMATICS/BTT656.

Article  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. https://doi.org/10.1186/S13059-014-0550-8/FIGURES/9.

Article  PubMed  PubMed Central  Google Scholar 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995. https://doi.org/10.1111/J.2517-6161.1995.TB02031.X.

Article  Google Scholar 

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2021. https://doi.org/10.1101/060012.

Article  Google Scholar 

Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000. https://doi.org/10.1093/NAR/28.1.27.

Article  PubMed  PubMed Central  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005. https://doi.org/10.1073/PNAS.0506580102/SUPPL_FILE/06580FIG7.JPG.

Article  PubMed  PubMed Central  Google Scholar 

Place TL, Domann FE, Case AJ. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic Biol Med. 2017. https://doi.org/10.1016/J.FREERADBIOMED.2017.10.003.

Article  PubMed  PubMed Central  Google Scholar 

Pias SC. How does oxygen diffuse from capillaries to tissue mitochondria? Barriers and pathways. J Physiol. 2021. https://doi.org/10.1113/JP278815.

Article  PubMed  Google Scholar 

Boonen RACM, Vreeswijk MPG, van Attikum H. CHEK2 variants: linking functional impact to cancer risk. Trends Cancer. 2022. https://doi.org/10.1016/J.TRECAN.2022.04.009.

Article  PubMed  Google Scholar 

Hubbi ME, Kshitiz GDM, Rey S, Wong CC, Luo W, Kim D-H, Dang CV, Levchenko A, Semenza GL. A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Sci Signal. 2013. https://doi.org/10.1126/scisignal.2003417.

Article  PubMed  PubMed Central  Google Scholar 

Benjamin D, Robay D, Hindupur SK, Pohlmann J, Colombi M, El-Shemerly MY, Maira SM, Moroni C, Lane HA, Hall MN. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep. 2018. https://doi.org/10.1016/J.CELREP.2018.11.043.

Article  PubMed  PubMed Central  Google Scholar 

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Zhan L, YanxiangGuo J, White E, Rabinowitz JD. Glucose feeds the TCA cycle via circulating lactate. Nat. 2017. https://doi.org/10.1038/NATURE24057.

Article  Google Scholar 

Wang N, Liu W, Zheng Y, Wang S, Yang B, Li M, Song J, Zhang F, Zhang X, Wang Q, Wang Z. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis. 2018. https://doi.org/10.1038/s41419-018-0876-3.

Article  PubMed  PubMed Central  Google Scholar 

Shafi AA, McNair CM, McCann JJ, Alshalalfa M, Shostak A, Severson TM, Zhu Y, Bergman A, Gordon N, Mandigo AC, Chand SN, Gallagher P, Dylgjeri E, Laufer TS, Vasilevskaya IA, Schiewer MJ, Brunner M, Feng FY, Zwart W, Knudsen KE. The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. Nat Commun. 2021. https://doi.org/10.1038/s41467-020-20513-5.

Article  PubMed  PubMed Central  Google Scholar 

Guo L, Li W, Zhu X, Ling Y, Qiu T, Dong L, Fang Y, Yang H, Ying J. PD-L1 expression and CD274 gene alteration in triple-negative breast cancer: implication for prognostic biomarker. Springerplus. 2016. https://doi.org/10.1186/S40064-016-2513-X.

Article  PubMed  PubMed Central  Google Scholar 

Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast cancer. Dev Cell. 2017. https://doi.org/10.1016/J.DEVCEL.2017.10.027.

Article  PubMed  PubMed Central  Google Scholar 

Yin P, Wang W, Gao J, Bai Y, Wang Z, Na L, Sun Y, Zhao C. Fzd2 contributes to breast cancer cell mesenchymal-like stemness and drug resistance. Oncol Res. 2020. https://doi.org/10.3727/096504020X15783052025051.

Article  PubMed  PubMed Central  Google Scholar 

Siletz A, Kniazeva E, Jeruss JS, Shea LD. Transcription factor networks in invasion-promoting breast carcinoma-associated fibroblasts. Cancer Microenviron. 2013. https://doi.org/10.1007/s12307-012-0121-z.

Article  PubMed  Google Scholar 

Furue M (2011) Epithelial tumor, invasion and stroma. Ann Dermatol

De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003. https://doi.org/10.1002/path.1398.

留言 (0)

沒有登入
gif