Pharmacological Insights: Mitochondrial ROS Generation by FNC (Azvudine) in Dalton’s Lymphoma Cells Revealed by Super Resolution Imaging

Abdulaal, A., Patel, A., & Charani, E., et al. (2020). Prognostic modeling of COVID-19 using artificial intelligence in the United Kingdom: model development and validation. Journal of Medical Internet Research, 22(8), e20259.

Article  PubMed  PubMed Central  Google Scholar 

Yang, H., Villani, R. M., & Wang, H., et al. (2018). The role of cellular reactive oxygen species in cancer chemotherapy. Journal of Experimental & Clinical Cancer Research, 37, 1–10.

Article  CAS  Google Scholar 

Kirtonia, A., Sethi, G., & Garg, M. (2020). The multifaceted role of reactive oxygen species in tumorigenesis. Cellular and Molecular Life Sciences, 77, 4459–4483.

Article  CAS  PubMed  Google Scholar 

Sahoo, B. M., Banik, B. K., & Borah, P., et al. (2022). Reactive oxygen species (ROS): key components in cancer therapies. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 22(2), 215–222.

CAS  Google Scholar 

Arora, S., Bhardwaj, A., & Singh, S., et al. (2013). An undesired effect of chemotherapy: gemcitabine promotes pancreatic cancer cell invasiveness through reactive oxygen species-dependent, nuclear factor κB-and hypoxia-inducible factor 1α-mediated up-regulation of CXCR4. Journal of Biological Chemistry, 288(29), 21197–21207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, W., Zou, P., & Zhao, Z., et al. (2016). Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer. Redox Biology, 10, 78–89.

Article  PubMed  PubMed Central  Google Scholar 

Lonetti, A., Cappellini, A., & Bertaina, A., et al. (2016). Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. Journal of Hematology & Oncology, 9, 1–16.

Article  Google Scholar 

Zhao, H., Wu, S., & Li, H., et al. (2019). ROS/KRAS/AMPK signaling contributes to gemcitabine-induced stem-like cell properties in pancreatic cancer. Molecular Therapy-Oncolytics, 14, 299–312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, R., Miller, L. D., & Isom, S., et al. (2022). Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia. Nature Communications, 13(1), 1673.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Blas-Garcia, A., Marti-Rodrigo, A., & Victor, V. M., et al. (2016). The purine analogues abacavir and didanosine increase acetaminophen-induced hepatotoxicity by enhancing mitochondrial dysfunction. Journal of Antimicrobial Chemotherapy, 71(4), 916–926.

Article  CAS  PubMed  Google Scholar 

Choi, J. (2012). Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radical Biology and Medicine, 52(7), 1135–1150.

Article  CAS  PubMed  Google Scholar 

Kumar, N., Delu, V., & Shukla, A., et al. (2023). Safety Assessment of a Nucleoside Analogue FNC (2’-deoxy-2’-β-fluoro-4’-azidocytidine) in Balb/c Mice: Acute Toxicity Study. Asian Pacific Journal of Cancer Prevention: APJCP, 24(6), 2157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fayzullina, D., Kharwar, R. K., & Acharya, A., et al. (2022). FNC: an advanced anticancer therapeutic or just an underdog? Frontiers in Oncology, 12, 198.

Article  Google Scholar 

Kumar, S., Verma, P. K., & Shukla, A., et al. (2023). Moringa oleifera L. leaf extract induces cell cycle arrest and mitochondrial apoptosis in Dalton’s Lymphoma: An in vitro and in vivo study. Journal of Ethnopharmacology, 302, 115849.

Article  CAS  PubMed  Google Scholar 

Onodera, A., Nishiumi, F., & Kakiguchi, K., et al. (2015). Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicology Reports, 2, 574–579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nienhaus, K., & Nienhaus, G. U. (2016). Where do we stand with super-resolution optical microscopy? Journal of Molecular Biology, 428(2), 308–322.

Article  CAS  PubMed  Google Scholar 

Dey, S., Baul, T. B., & Roy, B., et al. (1989). A new rapid method of air‐drying for scanning electron microscopy using tetramethylsilane. Journal of Microscopy, 156(2), 259–261.

Article  CAS  Google Scholar 

Lin, S., Li, Y., & Zamyatnin, Jr, A. A., et al. (2018). Reactive oxygen species and colorectal cancer. Journal of Cellular Physiology, 233(7), 5119–5132.

Article  CAS  PubMed  Google Scholar 

Elhasasna, H., Khan, R., & Bhanumathy, K. K., et al. (2022). A Drug Repurposing Screen Identifies Fludarabine Phosphate as a Potential Therapeutic Agent for N-MYC Overexpressing Neuroendocrine Prostate Cancers. Cells, 11(14), 2246.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karsa, M., Kosciolek, A., & Bongers, A., et al. (2021). Exploiting the reactive oxygen species imbalance in high-risk paediatric acute lymphoblastic leukaemia through auranofin. British Journal of Cancer, 125(1), 55–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosato, R. R., Almenara, J. A., & Maggio, S. C., et al. (2008). Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Molecular Cancer Therapeutics, 7(10), 3285–3297.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, N., Shukla, A., Kumar, S., et al. (2024). FNC (4′-azido-2′-deoxy-2′-fluoro (arbino) cytidine) as an Effective Therapeutic Agent for NHL: ROS Generation, Cell Cycle Arrest, and Mitochondrial-Mediated Apoptosis. Cell Biochemistry and Biophysics, 82, 1–17.

Kumar, N., Kumar, S., & Shukla, A., et al. (2024). Mitochondrial-mediated apoptosis as a therapeutic target for FNC (2′-deoxy-2′-b-fluoro-4′-azidocytidine)-induced inhibition of Dalton’s lymphoma growth and proliferation. Discover Oncology, 15(1), 16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barua, A., Choudhury, P., & Maity, J. K., et al. (2019). Chemotherapeutic potential of novel non-toxic nucleoside analogues on EAC ascitic tumour cells. Free Radical Research, 53(1), 57–67.

Article  CAS  PubMed  Google Scholar 

Porter, K. M., & Sutliff, R. L. (2012). HIV-1, reactive oxygen species, and vascular complications. Free Radical Biology and Medicine, 53(1), 143–159.

Article  CAS  PubMed  Google Scholar 

Liu, G.-Y., Zhai, Q., & Chen, J.-Z., et al. (2016). 2, 2′-Fluorine mono-carbonyl curcumin induce reactive oxygen species-Mediated apoptosis in Human lung cancer NCI-H460 cells. European Journal of Pharmacology, 786, 161–168.

Article  CAS  PubMed  Google Scholar 

Dong, S., Liang, S., & Cheng, Z., et al. (2022). ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 41(1), 1–27.

Article  Google Scholar 

Marchi, S., Giorgi, C., & Suski, J. M., et al. (2012). Mitochondria-ros crosstalk in the control of cell death and aging. Journal of Signal Transduction, 2012, 329635.

Article  PubMed  Google Scholar 

Hekimi, S., Wang, Y., & Noë, A. (2016). Mitochondrial ROS and the effectors of the intrinsic apoptotic pathway in aging cells: the discerning killers! Frontiers in Genetics, 7, 161.

Article  PubMed  PubMed Central  Google Scholar 

Simon, H.-U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5, 415–418.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif