The Effect of Nucleo-Olivary Stimulation on Climbing Fiber EPSPs in Purkinje Cells

Dehaene S. How We Learn: Why Brains Learn Better Than Any Machine . . . for Now. Penguin; 2020.

Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front Psychol. 2010;1:171.

Article  PubMed  PubMed Central  Google Scholar 

Spencer RMC, Ivry RB, Zelaznik HN. Role of the cerebellum in movements: control of timing or movement transitions? Exp Brain Res. 2005;161:383–96.

Article  PubMed  Google Scholar 

Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.

Article  CAS  PubMed  Google Scholar 

Oscarsson O. Functional units of the cerebellum-sagittal zones and microzones. Trends Neurosci. 1979;2:143–5.

Article  Google Scholar 

Harvey RJ, Napper RMA. Quantitative studies on the mammalian cerebellum. Prog Neurobiol. 1991;36:437–63.

Article  CAS  PubMed  Google Scholar 

King VM, Armstrong DM, Apps R, Trott JR. Numerical aspects of pontine, lateral reticular, and inferior olivary projections to two paravermal cortical zones of the cat cerebellum. J Comp Neurol. 1998;390:537–51.

Article  CAS  PubMed  Google Scholar 

Halverson HE, Khilkevich A, Mauk MD. Relating cerebellar purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J Neurosci. 2015;35:7813–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ten Brinke MM, Boele H-J, Spanke JK, Potters J-W, Kornysheva K, Wulff P, et al. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Rep. 2015;13:1977–88.

Article  PubMed  PubMed Central  Google Scholar 

Gallistel CR, Johansson F, Jirenhed D-A, Rasmussen A, Ricci M, Hesslow G. Quantitative properties of the creation and activation of a cell-intrinsic duration-encoding engram. Front Comput Neurosci. 2022;16:1019812.

Article  PubMed  PubMed Central  Google Scholar 

Gilbert M, Miall C. Gating by Functionally Indivisible Cerebellar Circuits: a Hypothesis. Cerebellum. 2021;20:518–32.

Article  PubMed  PubMed Central  Google Scholar 

Rasmussen A. Graded error signals in eyeblink conditioning. Neurobiol Learn Mem. 2020;170: 107023.

Article  PubMed  Google Scholar 

Freeman JH, Rabinak CA. Eyeblink conditioning in rats using pontine stimulation as a conditioned stimulus. Integr Physiol Behav Sci. 2004;39:180–91.

Article  PubMed  PubMed Central  Google Scholar 

Hesslow G, Svensson P, Ivarsson M. Learned movements elicited by direct stimulation of cerebellar mossy fiber afferents. Neuron. 1999;24:179–85.

Article  CAS  PubMed  Google Scholar 

Mauk MD, Steinmetz JE, Thompson RF. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A. 1986;83:5349–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boele HJ, Koekkoek SKE, De Zeeuw CI, Ruigrok TJH. Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J Neurosci. 2013;33:17897–907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Najafi F, Medina JF. Bidirectional short-term plasticity during single-trial learning of cerebellar-driven eyelid movements in mice. Neurobiol Learn Mem. 2020;170:107097.

Rasmussen A, Jirenhed DA, Wetmore DZ, Hesslow G. Changes in complex spike activity during classical conditioning. Front Neural Circuits. 2014;8:90.

Article  PubMed  PubMed Central  Google Scholar 

Jirenhed D-A, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27:2493–502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boele HJ, Peter S, Ten Brinke MM, Verdonschot L, IJpelaar ACH, Rizopoulos D, et al. Impact of parallel fiber to Purkinje cell long-term depression is unmasked in absence of inhibitory input. Science Advances. 2018;4:eaas9426.

Ito M. The cellular basis of cerebellar plasticity. CurrOpinNeurobiol. 1991;1:616–20.

CAS  Google Scholar 

Montarolo PG, Palestini M, Strata P. The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J Physiol. 1982;332:187–202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zucca R, Rasmussen A, Bengtsson F. Climbing Fiber Regulation of Spontaneous Purkinje Cell Activity and Cerebellum-Dependent Blink Responses(1,2,3). eNeuro. 2016;3. Available from: https://doi.org/10.1523/ENEURO.0067-15.2015

Davie JT, Clark BA, Häusser M. The origin of the complex spike in cerebellar Purkinje cells. J Neurosci. 2008;28:7599–609.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Lisberger SG. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature. 2014;510:529–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasmussen A, Jirenhed D-A, Zucca R, Johansson F, Svensson P, Hesslow G. Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci. 2013;33:13436–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62:388–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warnaar P, Couto J, Negrello M, Junker M, Smilgin A, Ignashchenkova A, et al. Duration of Purkinje cell complex spikes increases with their firing frequency. Front Cell Neurosci. 2015;9:122.

Article  PubMed  PubMed Central  Google Scholar 

Najafi F, Giovannucci A, Wang SS-H, Medina JF. Sensory-driven enhancement of calcium signals in individual Purkinje cell dendrites of awake mice. Cell Rep. 2014;6:792–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Zeeuw CI, de Zeeuw CI, Holstege JC, Calkoen F, Ruigrok TJH, Voogd J. A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level. Brain Res. 1988;447:369–75.

Article  PubMed  Google Scholar 

Hesslow G. Inhibition of inferior olivary transmission by mesencephalic stimulation in the cat. Neurosci Lett. 1986;63:76–80.

Article  CAS  PubMed  Google Scholar 

Bengtsson F, Jirenhed D-A, Svensson P, Hesslow G. Extinction of conditioned blink responses by cerebello-olivary pathway stimulation. NeuroReport. 2007;18:1479–82.

Article  PubMed  Google Scholar 

Kim OA, Ohmae S, Medina JF. A cerebello-olivary signal for negative prediction error is sufficient to cause extinction of associative motor learning. Nat Neurosci. 2020;23:1550–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JJ, Krupa DJ, Thompson RF. Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science. 1998;279:570–3.

Article  CAS  PubMed  Google Scholar 

Bengtsson F, Rasmussen A, Hesslow G. Feedback Control in the Olivocerebellar Loop. In: Manto MU, Gruol DL, Schmahmann JD, Koibuchi N, Sillitoe RV, editors. Handbook of the Cerebellum and Cerebellar Disorders. Cham: Springer International Publishing; 2022. p. 1215–38.

Wang X, Liu Z, Angelov M, Feng Z, Li X, Li A, et al. Excitatory nucleo-olivary pathway shapes cerebellar outputs for motor control. Nat Neurosci. 2023;26:1394–406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW, et al. Cerebellar modules operate at different frequencies. Elife. 2014;3:e02536.

Article  PubMed  PubMed Central  Google Scholar 

Hesslow G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol. 1994;476:229–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hesslow G. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. J Physiol. 1994;476:245–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 2018;6:e4794.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif