Fabrication and characterization of microporous soft templated photoactive 3D materials for water disinfection in batch and continuous flow

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Mturi, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399, 629–655.

Article  Google Scholar 

Jimenez, C. E. P., Keestra, S., Tandon, P., Cumming, O., Pickering, A. J., Moodley, A., & Chandler, C. I. R. (2023). Biosecurity and water, sanitation, and hygiene (WASH) interventions in animal agricultural settings for reducing infection burden, antibiotic use, and antibiotic resistance: A One Health systematic review. Lancet Planet Health., 7, e418–e434.

Article  Google Scholar 

Hernando-Amado, S., Coque, T. M., Baquero, F., & Martínez, J. L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 4, 1432–1442.

Article  PubMed  Google Scholar 

Nnadozie, C. F., & Odume, O. N. (2019). Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environmental Pollution, 254, 113067.

Article  PubMed  Google Scholar 

Zodrow, K. R., Li, Q., Buono, R. M., Chen, W., Daigger, G., Dueñas-Osorio, L., Elimelech, M., Huang, X., Jiang, G., Kim, J.-H., Logan, B. E., Sedlak, D. L., Westerhoff, P., & Alvarez, P. J. J. (2017). Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security. Environmental Science and Technology, 51, 10274–10281.

Article  ADS  PubMed  Google Scholar 

Ma, B., Ke, Q., & Ulbricht, M. (2023). Simultaneous removal of natural organic matters and copper (II) with ultrafiltration for drinking water treatment. Journal of Membrane Science, 671, 121408.

Article  Google Scholar 

Wang, Y., Ma, B., Ulbricht, M., Dong, Y., & Zhao, X. (2022). Progress in alumina ceramic membranes for water purification: Status and prospects. Water Research, 226, 119173.

Article  PubMed  Google Scholar 

Daigger, G. T. (2009). Evolving urban water and residuals management paradigms: Water reclamation and reuse, decentralization, and resource recovery. Water Environment Research, 81, 809–823.

Article  PubMed  Google Scholar 

Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., & Maurer, M. (2016). Emerging solutions to the water challenges of an urbanizing world. Science, 352, 928–933.

Article  ADS  PubMed  Google Scholar 

Priyadarshini, M., Das, I., Ghangrekar, M. M., & Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 316, 115295.

Article  PubMed  Google Scholar 

Zhai, Q., Song, L., Ji, X., Yu, Y., Ye, J., Xu, W., & Hou, M. (2022). Research progress of advanced oxidation technology for the removal of Microcystis aeruginosa: A review. Environmental Science and Pollution Research, 29, 40449–40461.

Article  PubMed  Google Scholar 

Richards, B. S. & Schäfer, A. I. (2010). Chapter 12. Renewable energy powered water treatment systems. In I. C. Escobar, & A. I. Schäfer (Eds.), Sustainability science and engineering (pp. 353–373). Elsevier.

Rani, A., Snyder, S. W., Kim, H., Lei, Z., & Pan, S.-Y. (2022). Pathways to a net-zero-carbon water sector through energy-extracting wastewater technologies. NPJ Clean Water, 5, 49.

Article  Google Scholar 

Hossain, F., Perales-Perez, O. J., Hwang, S., & Román, F. (2014). Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Science of the Total Environment, 466–467, 1047–1059.

Article  ADS  PubMed  Google Scholar 

Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42, 4591–4602.

Article  PubMed  Google Scholar 

Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G. P., & Hamblin, M. R. (2017). Photoantimicrobials—are we afraid of the light? The Lancet. Infectious Diseases, 17, e49–e55.

Article  PubMed  Google Scholar 

Aroso, R. T., Schaberle, F. A., Arnaut, L. G., & Pereira, M. M. (2021). Photodynamic disinfection and its role in controlling infectious diseases. Photochemical & Photobiological Sciences, 20, 1497–1545.

Article  Google Scholar 

Galstyan, A. (2021). Turning photons into drugs: Phthalocyanine-based photosensitizers as efficient photoantimicrobials. Chemistry—A European Journal, 27, 1903–1920.

Article  PubMed  Google Scholar 

Hu, X., Zhang, H., Wang, Y., Shiu, B.-C., Lin, J.-H., Zhang, S., Lou, C.-W., & Li, T.-T. (2022). Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives. Chemical Engineering Journal, 450, 138129.

Article  Google Scholar 

DeRosa, M. C., & Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233–234, 351–371.

Article  Google Scholar 

Mesquita, M. Q., Dias, C. J., Neves, M. G. P. M. S., Almeida, A., & Faustino, M. A. F. (2018). Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules, 23, 2424.

Zarrintaj, P., Moghaddam, A. S., Manouchehri, S., Atoufi, Z., Amiri, A., Amirkhani, M. A., Nilforoushzadeh, M. A., Saeb, M. R., Hamblin, M. R., & Mozafari, M. (2017). Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 12, 2403–2422.

Article  PubMed  Google Scholar 

Riesco, R., Boyer, L., Blosse, S., Lefebvre, P. M., Assemat, P., Leichle, T., Accardo, A., & Malaquin, L. (2019). Water-in-PDMS emulsion templating of highly interconnected porous architectures for 3D cell culture. ACS Applied Materials & Interfaces, 11, 28631–28640.

Article  Google Scholar 

Wang, W., Zhou, M., & Yuan, D. (2017). Carbon dioxide capture in amorphous porous organic polymers. Journal of Materials Chemistry A., 5, 1334–1347.

Article  Google Scholar 

Liang, J., Wang, S., Yu, H., Zhao, X., Wang, H., Tong, Y., Tang, Q., & Liu, Y. (2020). Solution-processed PDMS/SWCNT porous electrodes with high mass loading: Toward high performance all-stretchable-component lithium ion batteries. Sustainable Energy & Fuels., 4, 2718–2726.

Article  Google Scholar 

Khurana, B., Gierlich, P., Meindl, A., Gomes-da-Silva, L. C., & Senge, M. O. (2019). Hydrogels: Soft matters in photomedicine. Photochemical & Photobiological Sciences, 18, 2613–2656.

Article  Google Scholar 

Dong, J., Ghiladi, R. A., Wang, Q., Cai, Y., & Wei, Q. (2018). Protoporphyrin-IX conjugated cellulose nanofibers that exhibit high antibacterial photodynamic inactivation efficacy. Nanotechnology, 29, 265601.

Article  ADS  PubMed  Google Scholar 

Stoll, K. R., Scholle, F., Zhu, J., Zhang, X., & Ghiladi, R. A. (2019). BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochemical & Photobiological Sciences, 18, 1923–1932.

Article  Google Scholar 

Galstyan, A., & Strokov, K. (2022). Influence of photosensitizer concentration and polymer composition on photoinduced antimicrobial activity of PVA- and PVA-chitosan-based electrospun nanomaterials cross-linked with tailor-made silicon(IV) phthalocyanine. Photochemical & Photobiological Sciences, 21, 1387–1398.

Article  Google Scholar 

Sambiagio, C., & Noël, T. (2020). Flow photochemistry: Shine Some Light on Those Tubes! Trends in Chemistry., 2, 92–106.

Article  Google Scholar 

Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A., & Noël, T. (2022). Technological innovations in photochemistry for organic synthesis: Flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chemical Reviews, 122, 2752–2906.

Article  PubMed  Google Scholar 

Williams, J. D., & Kappe, C. O. (2020). Recent advances toward sustainable flow photochemistry. Current Opinion in Green and Sustainable Chemistry, 25, 100351.

Article  Google Scholar 

Zhu, D., Handschuh-Wang, S., & Zhou, X. (2017). Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A., 5, 16467–16497.

Article  Google Scholar 

Dąbrowski, J. M., Pucelik, B., Regiel-Futyra, A., Brindell, M., Mazuryk, O., Kyzioł, A., Stochel, G., Macyk, W., & Arnaut, L. G. (2016). Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coordination Chemistry Reviews, 325, 67–101.

Article  Google Scholar 

Spagnul, C., Turner, L. C., & Boyle, R. W. (2015). Immobilized photosensitizers for antimicrobial applications. Journal of Photochemistry and Photobiology B: Biology., 150, 11–30.

Article  PubMed  Google Scholar 

Galstyan, A., Majiya, H., & Dobrindt, U. (2022). Regulation of photo triggered cytotoxicity in electrospun nanomaterials: Role of photosensitizer binding mode and polymer identity. Nanoscale Advances, 4, 200–210.

Article  ADS  Google Scholar 

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.

Article  PubMed  PubMed Central  Google Scholar 

Lee, S. Y., Kang, D., Jeong, S., Do, H. T., & Kim, J. H. (2020). Photocatalytic degradation of Rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega, 5, 4233–4241.

Article  PubMed  PubMed Central  Google Scholar 

Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Angewandte Chemie International Edition, 37, 550–575.

Article  PubMed  Google Scholar 

Park, Y.-B., Im, H., Im, M., & Choi, Y.-K. (2011). Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. Journal of Materials Chemistry A., 21, 633–636.

Article  Google Scholar 

Mark, J. E., & Curro, J. G. (1983). A non-Gaussian theory of rubberlike elasticity based on rotational isomeric state simulations of network chain configurations. I Polyethylene and polydimethylsiloxane short-chain unimodal networks. Journal of Chemical Physics, 79, 5705–5709.

Article  ADS  Google Scholar 

Durmus, F. Ç., Maiorano, L. P., & Molina, J. M. (2022). Open-cell aluminum foams with bimodal pore size distributions for emerging thermal management applications. International Journal of Heat and Mass Transfer, 191, 122852.

留言 (0)

沒有登入
gif