Genome Sequence Analysis of Calcifying Bacteria Bacillus paranthracis CT5 and Its Biomineralization Efficacy to Improve the Strength and Durability Properties of Civil Structures

Zavarzin GA (2002) Microbial geochemical calcium cycle. Microbiology 71:1–17. https://doi.org/10.1023/A:1017945329951

Article  CAS  Google Scholar 

Li W, Liu LP, Zhou PP, Cao L, Yu LJ, Jiang SY (2011) Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. Curr Sci 100:502–508

CAS  Google Scholar 

Dhami NK, Reddy MS, Mukherjee MS (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314. https://doi.org/10.3389/fmicb.2013.00314

Article  PubMed  PubMed Central  Google Scholar 

Dhami NK, Reddy MS, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 5:93118. https://doi.org/10.3389/FMICB.2014.00304/BIBTEX

Article  Google Scholar 

Stabnikov V, Naeimi M, Ivanov V, Chu J (2011) Formation of water-impermeable crust on sand surface using biocement. Cem Concr Res 41:1143–1149. https://doi.org/10.1016/j.cemconres.2011.06.017

Article  CAS  Google Scholar 

Mobley HL, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108. https://doi.org/10.1128/mr.53.1.85-108.1989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93:171–181. https://doi.org/10.1016/S0168-1656(01)00393-5

Article  CAS  PubMed  Google Scholar 

Dhami NK, Sudhakara Reddy M, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 5:32–39. https://doi.org/10.3389/fmicb.2014.00304

Article  Google Scholar 

De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006

Article  Google Scholar 

Achal V, Pan X (2011) Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol 62:894–902. https://doi.org/10.1007/s00284-010-9801-4

Article  CAS  PubMed  Google Scholar 

Botré C, Botré F (1989) Carbonic anhydrase and urease: an investigation in vitro on the possibility of a synergic action. Biochim Biophys Acta (BBA)/Protein Struct Mol 997:111–114. https://doi.org/10.1016/0167-4838(89)90141-6

Article  Google Scholar 

Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 172:2552–2561. https://doi.org/10.1007/s12010-013-0694-0

Article  CAS  PubMed  Google Scholar 

Joshi S, Goyal S, Reddy MS (2020) Influence of biogenic treatment in improving the durability properties of waste amended concrete: a review. Constr Build Mater 263:120170. https://doi.org/10.1016/j.conbuildmat.2020.120170

Article  CAS  Google Scholar 

Sharma B, Singh A, Joshi S, Reddy MS (2023) Utilization of sandstone waste in cement mortar for sustainable production of building materials through biomineralization. J Sustain Cem Mater 12:712–720. https://doi.org/10.1080/21650373.2022.2116500

Article  CAS  Google Scholar 

Joshi S, Goyal S, Mukherjee A, Reddy MS (2017) Microbial healing of cracks in concrete: a review. J Ind Microbiol Biotechnol 44:1511–1525. https://doi.org/10.1007/s10295-017-1978-0

Article  CAS  PubMed  Google Scholar 

Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061

Article  Google Scholar 

Achal V, Mukherjee A, Reddy MS (2010) Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind Biotechnol 6:170–174. https://doi.org/10.1089/ind.2010.6.170

Article  Google Scholar 

Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988. https://doi.org/10.1007/s10295-009-0578-z

Article  CAS  PubMed  Google Scholar 

Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438. https://doi.org/10.1007/s10295-008-0514-7

Article  CAS  PubMed  Google Scholar 

Natarajan KR (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J Chem Educ 73:556–557. https://doi.org/10.1021/ED072P556

Article  Google Scholar 

Armstrong JM, Myers DV, Verpoorte JA et al (1966) Purification and properties of human erythrocyte carbonic anhydrases. ASBMB 241:5137–5149. https://doi.org/10.1016/S0021-9258(18)99681-X

Article  CAS  Google Scholar 

Tepe M, Arslan Ş, Koralay T, MercanDoğan N (2019) Precipitation and characterization of CaCO3 of Bacillus amyloliquefaciens U17 strain producing urease and carbonic anhydrase. Turk J Biol 43:198–208. https://doi.org/10.3906/biy-1901-56

Article  CAS  PubMed  PubMed Central  Google Scholar 

APHA (1989) Future of standard methods for the examination of water and wastewater. Health Lab Sci 4:137–141

Google Scholar 

BIS (2013) Ordinary Portland cement,43 Grade - specifications, ICS 91.100.10, Bureau of Indian Standards, IS: 8112-2013. New Delhi, India: 2013

BIS (1970) Indian standard specification for coarse and fine aggregates from natural sources for concrete. UDC 691.322, Bureau of Indian Standards, IS:383-1970, New Delhi, India: 1970. Bur Indian Stand Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 383

BIS (1988) Standard test method for compressive strength of hydraulic cement mortars. Bur Indian Stand 4031:3–7

Google Scholar 

ASTM (2008) Standard test method for compressive strength of hydraulic cement mortars. Annu B ASTM Stand 04:9

Google Scholar 

Achal V, Pan X, Özyurt N (2011) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37:554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009

Article  Google Scholar 

Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. https://doi.org/10.14806/ej.17.1.200

Article  Google Scholar 

Prjibelski A, Antipov D, Meleshko D et al (2020) Using SPAdes De Novo Assembler. Curr Protoc Bioinforma. https://doi.org/10.1002/cpbi.102

Article  Google Scholar 

Aziz RK, Bartels D, Best A et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom. https://doi.org/10.1186/1471-2164-9-75

Article  Google Scholar 

Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY et al (2023) Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. https://doi.org/10.1093/nar/gkad326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. https://doi.org/10.1093/nar/28.1.33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M (2023) KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51(D1):D587–D592. https://doi.org/10.1093/nar/gkac963

Article  CAS  PubMed  Google Scholar 

Lemos JAC, Chen YYM, Burne RA (2001) Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J Bacteriol 183:6074–6084. https://doi.org/10.1128/JB.183.20.6074-6084.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pedrozo HA, Schwartz Z, Luther M et al (1996) A mechanism of adaptation to hypergravity in the statocyst of Aplysia californica. Hear Res 102:51–62. https://doi.org/10.1016/S0378-5955(96)00147-5

Article  CAS  PubMed  Google Scholar 

Park IS, Hausinger RP (1995) Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science 267(5201):1156–1158. https://doi.org/10.1126/science.7855593

Article  CAS  PubMed  Google Scholar 

Qian C, Wang R, Cheng L, Wang J (2010) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin J Chem 28:847–857. https://doi.org/10.1002/cjoc.201090156

Article  CAS  Google Scholar 

Achal V, Mukherjee A, Reddy MS (2010) Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement. J Microbiol Biotechnol 20:1571–1576. https://doi.org/10.4014/jmb.1006.06032

Article  CAS  PubMed  Google Scholar 

Joshi S, Goyal S, Reddy MS (2018) Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties. J Ind Microbiol Biotechnol 45:657–667. https://doi.org/10.1007/s10295-018-2050-4

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif