Artificial intelligence–based, volumetric assessment of the bone marrow metabolic activity in [18F]FDG PET/CT predicts survival in multiple myeloma

Corre J, Perrot A, Hulin C, Caillot D, Stoppa AM, Facon T, Leleu X, Dib M, Karlin L, Moreau P, Mohty M, Mariette C, Fontan J, Marolleau JP, Demarquette H, Slama B, Voillat L, Macro M, Orsini-Piocelle F, Brechignac S, Rey P, Collet P, Tiab M, Belhadj K, Lifermann F, Clement-Filliatre L, Sohn C, Richez V, Avet-Loiseau H; Intergroupe Francophone du Myélome (IFM). Improved survival in multiple myeloma during the 2005–2009 and 2010–2014 periods. Leukemia. 2021;35(12):3600–3603. https://doi.org/10.1038/s41375-021-01250-0.

Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97(8):1086–107. https://doi.org/10.1002/ajh.26590.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russell SJ, Rajkumar SV. Multiple myeloma and the road to personalised medicine. Lancet Oncol. 2011;12(7):617–9. https://doi.org/10.1016/S1470-2045(11)70143-7.

Article  PubMed  Google Scholar 

Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–54. https://doi.org/10.1002/1097-0142(197509)36:3%3c842::aid-cncr2820360303%3e3.0.co;2-u.

Article  CAS  PubMed  Google Scholar 

Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Bladé J, Boccadoro M, Child JA, Avet-Loiseau H, Kyle RA, Lahuerta JJ, Ludwig H, Morgan G, Powles R, Shimizu K, Shustik C, Sonneveld P, Tosi P, Turesson I, Westin J. International Staging System for multiple myeloma. J Clin Oncol. 2005 23(15):3412–20.  https://doi.org/10.1200/JCO.2005.04.242. Erratum in: J Clin Oncol. 2005 23(25):6281. Harousseau, Jean-Luc [corrected to Avet-Loiseau, Herve]

Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hillengass J, Usmani S, Rajkumar SV, Durie BGM, Mateos MV, Lonial S, Joao C, Anderson KC, García-Sanz R, Riva E, Du J, van de Donk N, Berdeja JG, Terpos E, Zamagni E, Kyle RA, San Miguel J, Goldschmidt H, Giralt S, Kumar S, Raje N, Ludwig H, Ocio E, Schots R, Einsele H, Schjesvold F, Chen WM, Abildgaard N, Lipe BC, Dytfeld D, Wirk BM, Drake M, Cavo M, Lahuerta JJ, Lentzsch S. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019;20(6):e302–12. https://doi.org/10.1016/S1470-2045(19)30309-2.Erratum.In:LancetOncol.2019Jul;20(7):e346.

Article  PubMed  Google Scholar 

Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S, et al. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017;18(4):e206–17.

Article  PubMed  Google Scholar 

Zamagni E, Tacchetti P, Cavo M. Imaging in multiple myeloma: how? When? Blood. 2019;133(7):644–51.

Article  CAS  PubMed  Google Scholar 

Zamagni E, Nanni C, Dozza L, Carlier T, Bailly C, Tacchetti P, Versari A, Chauvie S, Gallamini A, Gamberi B, Caillot D, Patriarca F, Macro M, Boccadoro M, Garderet L, Barbato S, Fanti S, Perrot A, Gay F, Sonneveld P, Karlin L, Cavo M, Bodet-Milin C, Moreau P, Kraeber-Bodéré F. Standardization of 18F-FDG-PET/CT according to Deauville criteria for metabolic complete response definition in newly diagnosed multiple myeloma. J Clin Oncol. 2021;39(2):116–25. https://doi.org/10.1200/JCO.20.00386.

Article  CAS  PubMed  Google Scholar 

Nanni C, Zamagni E, Versari A, Chauvie S, Bianchi A, Rensi M, et al. Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTUs (Italian Myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging. 2016 43(3):414–21.

Fonti R, Pellegrino S, Catalano L, Pane F, Del Vecchio S, Pace L. Visual and volumetric parameters by 18F-FDG-PET/CT: a head to head comparison for the prediction of outcome in patients with multiple myeloma. Ann Hematol. 2020;99(1):127–35. https://doi.org/10.1007/s00277-019-03852-2.

Article  CAS  PubMed  Google Scholar 

McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, Waheed S, van Rhee F, Zangari M, Heuck CJ, Petty N, Schinke C, Thanendrarajan S, Mitchell A, Hoering A, Barlogie B, Morgan GJ, Davies FE. Assessment of total lesion glycolysis by 18F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res. 2017;23(8):1981–7. https://doi.org/10.1158/1078-0432.CCR-16-0235.

Article  CAS  PubMed  Google Scholar 

Terao T, Machida Y, Tsushima T, Miura D, Narita K, Kitadate A, et al. Pre-treatment metabolic tumour volume and total lesion glycolysis are superior to conventional positron-emission tomography/computed tomography variables for outcome prediction in patients with newly diagnosed multiple myeloma in clinical practice. Br J Haematol. 2020;191(2):223–30.

Article  CAS  PubMed  Google Scholar 

Takahashi MES, Mosci C, Souza EM, Brunetto SQ, Etchebehere E, Santos AO, et al. Proposal for a quantitative [18F]FDG PET/CT metabolic parameter to assess the intensity of bone involvement in multiple myeloma. Sci Rep. 2019;9(1):16429.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Sachpekidis C, Enqvist O, Ulén J, Kopp-Schneider A, Pan L, Jauch A, Hajiyianni M, John L, Weinhold N, Sauer S, Goldschmidt H, Edenbrandt L, Dimitrakopoulou-Strauss A. Application of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma. Eur J Nucl Med Mol Imaging. 2023;50(12):3697–708. https://doi.org/10.1007/s00259-023-06339-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121(5):749–57.

Article  Google Scholar 

Goldschmidt H, Mai EK, Dürig J, Scheid C, Weisel KC, Kunz C, Bertsch U, Hielscher T, Merz M, Munder M, Lindemann HW, Hügle-Dörr B, Tichy D, Giesen N, Hose D, Seckinger A, Huhn S, Luntz S, Jauch A, Elmaagacli A, Rabold B, Fuhrmann S, Brossart P, Goerner M, Bernhard H, Hoffmann M, Hillengass J, Raab MS, Blau IW, Hänel M, Salwender HJ; German-speaking Myeloma Multicenter Group (GMMG). Response-adapted lenalidomide maintenance in newly diagnosed myeloma: results from the phase III GMMG-MM5 trial. Leukemia. 2020 34(7):1853–1865. https://doi.org/10.1038/s41375-020-0724-1

Sachpekidis C, Merz M, Kopp-Schneider A, Jauch A, Raab MS, Sauer S, Hillengass J, Goldschmidt H, Dimitrakopoulou-Strauss A. Quantitative dynamic 18F-fluorodeoxyglucose positron emission tomography/computed tomography before autologous stem cell transplantation predicts survival in multiple myeloma. Haematologica. 2019;104(9):e420–3. https://doi.org/10.3324/haematol.2018.213041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sachpekidis C, Merz M, Raab MS, Bertsch U, Weru V, Kopp-Schneider A, Jauch A, Goldschmidt H, Dimitrakopoulou-Strauss A. The prognostic significance of [18F]FDG PET/CT in multiple myeloma according to novel interpretation criteria (IMPeTUs). EJNMMI Res. 2021;11(1):100. https://doi.org/10.1186/s13550-021-00846-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trägårdh E, Borrelli P, Kaboteh R, Gillberg T, Ulén J, Enqvist O, Edenbrandt L. RECOMIA-a cloud-based platform for artificial intelligence research in nuclear medicine and radiology. EJNMMI Phys. 2020;7(1):51. https://doi.org/10.1186/s40658-020-00316-9.

Article  PubMed  PubMed Central  Google Scholar 

Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8.

Article  CAS  PubMed  Google Scholar 

Fonti R, Larobina M, Del Vecchio S, De Luca S, Fabbricini R, Catalano L, et al. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med. 2012;53:1829–35.

Article  CAS  PubMed  Google Scholar 

Meignan M, Cottereau AS, Versari A, Chartier L, Dupuis J, Boussetta S, Grassi I, Casasnovas RO, Haioun C, Tilly H, Tarantino V, Dubreuil J, Federico M, Salles G, Luminari S, Trotman J. Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J Clin Oncol. 2016;34(30):3618–26. https://doi.org/10.1200/JCO.2016.66.9440.

Article  PubMed  Google Scholar 

Moskowitz AJ, Schöder H, Gavane S, Thoren KL, Fleisher M, Yahalom J, McCall SJ, Cadzin BR, Fox SY, Gerecitano J, Grewal R, Hamlin PA, Horwitz SM, Kumar A, Matasar M, Ni A, Noy A, Palomba ML, Perales MA, Portlock CS, Sauter C, Straus D, Younes A, Zelenetz AD, Moskowitz CH. Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood. 2017;130(20):2196–203. https://doi.org/10.1182/blood-2017-06-788877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cottereau AS, El-Galaly TC, Becker S, Broussais F, Petersen LJ, Bonnet C, Prior JO, Tilly H, Hutchings M, Casasnovas O, Meignan M. Predictive value of PET response combined with baseline metabolic tumor volume in peripheral T-cell lymphoma patients. J Nucl Med. 2018;59(4):589–95. https://doi.org/10.2967/jnumed.117.193946.

Article  CAS  PubMed  Google Scholar 

Kostakoglu L, Chauvie S. PET-derived quantitative metrics for response and prognosis in lymphoma. PET Clin. 2019;14(3):317–29. https://doi.org/10.1016/j.cpet.2019.03.002.

Article  PubMed  Google Scholar 

Froelich JW, Salavati A. Artificial intelligence in PET/CT is about to make whole-body tumor burden measurements a clinical reality. Radiology. 2020;294(2):453–4. https://doi.org/10.1148/radiol.2019192425.

Article  PubMed  Google Scholar 

Terao T, Machida Y, Narita K, Kuzume A, Tabata R, Tsushima T, et al. Total diffusion volume in MRI vs. total lesion glycolysis in PET/CT for tumor volume evaluation of multiple myeloma. Eur Radiol. 2021 31(8):6136–6144.

Nanni C, Versari A, Chauvie S, Bertone E, Bianchi A, Rensi M, Bellò M, Gallamini A, Patriarca F, Gay F, Gamberi B, Ghedini P, Cavo M, Fanti S, Zamagni E. Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): final results. IMPeTUs (Italian myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging. 2018;45(5):712–9. https://doi.org/10.1007/s00259-017-3909-8.

Article  PubMed  Google Scholar 

Goldschmidt H, Mai EK, Bertsch U, Fenk R, Nievergall E, Tichy D, et al. German-Speaking Myeloma Multicenter Group (GMMG) HD7 investigators. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (GMMG-HD7): part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022;9(11):e810-e821.

留言 (0)

沒有登入
gif