Age and Pre-operative HbA1c levels affect renal function compensation in living kidney donors

Egawa H, Tanabe K, Fukushima N, Date H, Sugitani A, Haga H (2012) Current status of organ transplantation in Japan. Am J Transplant 12(3):523–530. https://doi.org/10.1111/j.1600-6143.2011.03822.x

Article  CAS  PubMed  Google Scholar 

Fukushima N, Ono M, Saiki Y, Sawa Y, Nunoda S, Isobe M (2017) Registry Report on Heart Transplantation in Japan (June 2016). Circ J 81(3):298–303. https://doi.org/10.1253/circj.CJ-16-0976

Article  PubMed  Google Scholar 

Ito T, Kenmochi T, Aida N, Kurihara K, Tomimaru Y, Ito T (2021) Impact of the revision of the law on pancreatic transplants in Japan-An analysis of the Japanese Pancreas Transplants Registry. J Hepatobiliary Pancreat Sci 28(4):353–364. https://doi.org/10.1002/jhbp.911

Article  PubMed  Google Scholar 

Soyama A, Eguchi S (2016) The current status and future perspectives of organ donation in Japan: learning from the systems in other countries. Surg Today 46(4):387–392. https://doi.org/10.1007/s00595-015-1211-6

Article  PubMed  Google Scholar 

Soyama A, Eguchi S, Egawa H (2016) Liver transplantation in Japan. Liver Transpl 22(10):1401–1407. https://doi.org/10.1002/lt.24502

Article  PubMed  Google Scholar 

Ito T, Kenmochi T, Ota A, Kuramitsu K, Soyama A, Kinoshita O et al (2021) National survey on deceased donor organ transplantation during the COVID-19 pandemic in Japan. Surg Today. https://doi.org/10.1007/s00595-021-02388-1

Article  PubMed  PubMed Central  Google Scholar 

Nakagawa Y, Mieno M, Ichimaru N, Morita K, Nakamura M, Hotta K et al (2022) Annual Progress Report from the Japanese Renal Transplant Registry: Number of Renal Transplantations in 2021 and Follow-up Survey. Ishoku. 57(3):199–219

Google Scholar 

https://www.jses.or.jp/modules/gijutsunintei/index.php?content_id=1: https://www.jses.or.jp/modules/gijutsunintei/index.php?content_id=1 Accessed.

https://cdn.jsn.or.jp/guideline/pdf/Donor-guidelines.pdf.

Ethics Committee of the Transplantation S. (2004) The consensus statement of the Amsterdam Forum on the Care of the Live Kidney Donor. Transplantation 78(4):491–2. https://doi.org/10.1097/01.tp.0000136654.85459.1e.

Song T, Fu L, Huang Z, He S, Zhao R, Lin T et al (2014) Change in renal parenchymal volume in living kidney transplant donors. Int Urol Nephrol 46(4):743–747. https://doi.org/10.1007/s11255-013-0592-y

Article  PubMed  Google Scholar 

Chen KW, Wu MW, Chen Z, Tai BC, Goh YS, Lata R et al (2016) Compensatory Hypertrophy After Living Donor Nephrectomy. Transplant Proc 48(3):716–719. https://doi.org/10.1016/j.transproceed.2015.12.082

Article  CAS  PubMed  Google Scholar 

Tan JC, Busque S, Workeneh B, Ho B, Derby G, Blouch KL et al (2010) Effects of aging on glomerular function and number in living kidney donors. Kidney Int 78(7):686–692. https://doi.org/10.1038/ki.2010.128

Article  PubMed  PubMed Central  Google Scholar 

Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15(4):361–387

Article  PubMed  Google Scholar 

Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

Article  CAS  PubMed  Google Scholar 

Kasiske BL, Ma JZ, Louis TA, Swan SK (1995) Long-term effects of reduced renal mass in humans. Kidney Int 48(3):814–819. https://doi.org/10.1038/ki.1995.355

Article  CAS  PubMed  Google Scholar 

Narkun-Burgess DM, Nolan CR, Norman JE, Page WF, Miller PL, Meyer TW (1993) Forty-five year follow-up after uninephrectomy. Kidney Int 43(5):1110–1115. https://doi.org/10.1038/ki.1993.156

Article  CAS  PubMed  Google Scholar 

Najarian JS, Chavers BM, McHugh LE, Matas AJ (1992) 20 years or more of follow-up of living kidney donors. Lancet 340(8823):807–810. https://doi.org/10.1016/0140-6736(92)92683-7

Article  CAS  PubMed  Google Scholar 

Anderson RG, Bueschen AJ, Lloyd LK, Dubovsky EV, Burns JR (1991) Short-term and long-term changes in renal function after donor nephrectomy. J Urol 145(1):11–13. https://doi.org/10.1016/s0022-5347(17)38232-0

Article  CAS  PubMed  Google Scholar 

Muzaale AD, Massie AB, Wang MC, Montgomery RA, McBride MA, Wainright JL et al (2014) Risk of end-stage renal disease following live kidney donation. JAMA 311(6):579–586. https://doi.org/10.1001/jama.2013.285141

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mason RC, Ewald BH (1965) Studies on compensatory renal hypertrophy. I. Effect of unilateral ureteral ligation and transection. Proc Soc Exp Biol Med. 120(1):210–4. https://doi.org/10.3181/00379727-120-30488

Article  CAS  PubMed  Google Scholar 

Pollock CA, Field MJ (1993) Compensatory renal hypertrophy: tubular cell growth and transport studied in primary culture. Nephron 64(4):615–620. https://doi.org/10.1159/000187410

Article  CAS  PubMed  Google Scholar 

Salehmoghaddam S, Bradley T, Mikhail N, Badie-Dezfooly B, Nord EP, Trizna W et al (1985) Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney. Lab Invest 53(4):443–452

CAS  PubMed  Google Scholar 

Pfaller W, Seppi T, Ohno A, Giebisch G, Beck FX (1998) Quantitative morphology of renal cortical structures during compensatory hypertrophy. Exp Nephrol 6(4):308–319. https://doi.org/10.1159/000020538

Article  CAS  PubMed  Google Scholar 

Fine LG, Badie-Dezfooly B, Lowe AG, Hamzeh A, Wells J, Salehmoghaddam S (1985) Stimulation of Na+/H+ antiport is an early event in hypertrophy of renal proximal tubular cells. Proc Natl Acad Sci U S A 82(6):1736–1740. https://doi.org/10.1073/pnas.82.6.1736

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhong F, Mallipattu SK, Estrada C, Menon M, Salem F, Jain MK et al (2016) Reduced Kruppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy. Am J Pathol 186(8):2021–2031. https://doi.org/10.1016/j.ajpath.2016.03.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagasu H, Satoh M, Kidokoro K, Nishi Y, Channon KM, Sasaki T et al (2012) Endothelial dysfunction promotes the transition from compensatory renal hypertrophy to kidney injury after unilateral nephrectomy in mice. Am J Physiol Renal Physiol 302(11):F1402–F1408. https://doi.org/10.1152/ajprenal.00459.2011

Article  CAS  PubMed  Google Scholar 

Sigmon DH, Gonzalez-Feldman E, Cavasin MA, Potter DL, Beierwaltes WH (2004) Role of nitric oxide in the renal hemodynamic response to unilateral nephrectomy. J Am Soc Nephrol 15(6):1413–1420. https://doi.org/10.1097/01.asn.0000130563.67384.81

Article  CAS  PubMed  Google Scholar 

Saxton RA, Sabatini DM (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 168(6):960–976. https://doi.org/10.1016/j.cell.2017.02.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen JK, Nagai K, Chen J, Plieth D, Hino M, Xu J et al (2015) Phosphatidylinositol 3-kinase signaling determines kidney size. J Clin Invest 125(6):2429–2444. https://doi.org/10.1172/JCI78945

Article  PubMed  PubMed Central  Google Scholar 

Zunić G, Tomić A, Spasić S (2013) Unilateral nephrectomy causes an early abrupt decrease in plasma arginine and simultaneous reduction in glomerular filtration rate in living kidney donors. Clin Biochem 46(15):1394–1398. https://doi.org/10.1016/j.clinbiochem.2013.04.031

Article  CAS  PubMed  Google Scholar 

Nagasu H, Satoh M, Kuwabara A, Yorimitsu D, Kidokoro K, Nishi Y et al (2011) Overexpression of klotho protein modulates uninephrectomy-induced compensatory renal hypertrophy by suppressing IGF-I signals. Biochem Biophys Res Commun 407(1):39–43. https://doi.org/10.1016/j.bbrc.2011.02.089

Article  CAS  PubMed  Google Scholar 

Hauser P, Kainz A, Perco P, Bergmeister H, Mitterbauer C, Schwarz C et al (2005) Transcriptional response in the unaffected kidney after contralateral hydronephrosis or nephrectomy. Kidney Int 68(6):2497–2507. https://doi.org/10.1111/j.1523-1755.2005.00725.x

Article  CAS  PubMed  Google Scholar 

Averbukh Z, Bogin E, Cohn M, Goren E, Modai D, Rosenmann E et al (1988) The renotrophic factor, a persistent stimulus that crosses the placenta in mice. J Physiol 404:31–38. https://doi.org/10.1113/jphysiol.1988.sp017276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogawa K, Nowinski WW (1958) Mitosis stimulating factor in serum of unilaterally nephrectomized rats. Proc Soc Exp Biol Med 99(2):350–354. https://doi.org/10.3181/00379727-99-24347

Article  CAS  PubMed  Google Scholar 

Dijkhuis CM, van Urk H, Malamud D, Malt RA (1975) Rapid reversal of compensatory renal hypertrophy after withdrawal of the stimulus. Surgery 78(4):476–480

留言 (0)

沒有登入
gif