Effect of blood flow restriction and electrical muscle stimulation on human glycemic response to a glucose challenge

Baron AD, Brechtel G, Wallace P, Edelman SV (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol-Endocrinol Metabolism 255:E769–E774. https://doi.org/10.1152/ajpendo.1988.255.6.E769

Article  CAS  Google Scholar 

Baron AD, Laakso M, Brechtel G et al (1990) Reduced postprandial skeletal muscle blood flow contributes to glucose intolerance in human obesity. J Clin Endocrinol Metab 70:1525–1533. https://doi.org/10.1210/jcem-70-6-1525

Article  CAS  PubMed  Google Scholar 

Cartee GD, Douen AG, Ramlal T et al (1991) Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol 70:1593–1600. https://doi.org/10.1152/jappl.1991.70.4.1593

Article  CAS  PubMed  Google Scholar 

Chen Y-C, Davies RG, Hengist A et al (2022) Effects of neuromuscular electrical stimulation on energy expenditure and postprandial metabolism in healthy men. Appl Physiol Nutr Metab 47:27–33. https://doi.org/10.1139/apnm-2021-0361

Article  CAS  Google Scholar 

Cohen JN, Kuikman MA, Politis-Barber V et al (2022) Blood flow restriction and stimulated muscle contractions do not improve metabolic or vascular outcomes following glucose ingestion in young, active individuals. J Appl Physiol 133:75–86. https://doi.org/10.1152/japplphysiol.00178.2022

Article  CAS  PubMed  Google Scholar 

Fry CS, Glynn EL, Drummond MJ et al (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol 108:1199–1209. https://doi.org/10.1152/japplphysiol.01266.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenhaff PL, Söderlund K, Ren JM, Hultman E (1993) Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. J Physiol 460:443–453. https://doi.org/10.1113/jphysiol.1993.sp019480

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamada T, Sasaki H, Hayashi T et al (2003) Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation. J Appl Physiol 94:2107–2112. https://doi.org/10.1152/japplphysiol.00486.2002

Article  CAS  PubMed  Google Scholar 

Hamada T, Hayashi T, Kimura T et al (2004) Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J Appl Physiol 96:911–916. https://doi.org/10.1152/japplphysiol.00664.2003

Article  PubMed  Google Scholar 

Holloszy JO, Hansen PA (1996) Regulation of glucose transport into skeletal muscle. Reviews of Physiology, Biochemistry and Pharmacology, vol 94. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 99–193

Google Scholar 

Horiuchi M, Thijssen DHJ (2020) Ischemic preconditioning prevents impact of prolonged sitting on glucose tolerance and markers of cardiovascular health but not cerebrovascular responses. Am J Physiol Endocrinol Metab 319:E821–E826. https://doi.org/10.1152/ajpendo.00302.2020

Article  CAS  PubMed  Google Scholar 

Iida H, Kurano M, Takano H et al (2007) Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100:275–285. https://doi.org/10.1007/s00421-007-0430-y

Article  PubMed  Google Scholar 

Katz A (1988) G-1,6–P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle. Am J Physiol Cell Physiol 255:C140–C144. https://doi.org/10.1152/ajpcell.1988.255.2.C140

Article  CAS  Google Scholar 

Katz A (1997) Differential responses of glycogen synthase to ischaemia and ischaemic contraction in human skeletal muscle. Exp Physiol 82:203–211. https://doi.org/10.1113/expphysiol.1997.sp004009

Article  CAS  PubMed  Google Scholar 

Katz LD, Glickman MG, Rapoport S et al (1983) Splanchnic and peripheral disposal of oral glucose in man. Diabetes 32:675–679. https://doi.org/10.2337/diab.32.7.675

Article  CAS  PubMed  Google Scholar 

Keir DA, Iannetta D, Mattioni Maturana F et al (2022) Identification of non-invasive exercise thresholds: methods, strategies, and an online App. Sports Med 52:237–255. https://doi.org/10.1007/s40279-021-01581-z

Article  PubMed  Google Scholar 

Kennedy JW, Hirshman MF, Gervino EV et al (1999) Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48:1192–1197. https://doi.org/10.2337/diabetes.48.5.1192

Article  CAS  PubMed  Google Scholar 

Lanza IR, Tevald MA, Befroy DE, Kent-Braun JA (2010) Intracellular energetics and critical P o 2 in resting ischemic human skeletal muscle in vivo. Am J Physiol Regul Integr Comp Physiol 299:R1415–R1422. https://doi.org/10.1152/ajpregu.00225.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maehlum S, Felig P, Wahren J (1978) Splanchnic glucose and muscle glycogen metabolism after glucose feeding during postexercise recovery. Am J Physiol-Endocrinol Metabol 235:E255. https://doi.org/10.1152/ajpendo.1978.235.3.E255

Article  CAS  Google Scholar 

Nielsen JS, Madsen K, Jørgensen LV, Sahlin K (2005) Effects of lengthening contraction on calcium kinetics and skeletal muscle contractility in humans. Acta Physiol Scand 184:203–214. https://doi.org/10.1111/j.1365-201X.2005.01449.x

Article  CAS  PubMed  Google Scholar 

Olefsky JM, Reaven GM (1974) Insulin and glucose responses to identical oral glucose tolerance tests performed Forty-eight hours apart. Diabetes 23:449–453. https://doi.org/10.2337/diab.23.5.449

Article  CAS  PubMed  Google Scholar 

Ruggieri G, Rocca AR (2010) Analysis of past and present methods of measuring and estimating body surface area and the resulting evaluation of its doubtful suitability to universal application. Blood Purif 30:296–305. https://doi.org/10.1159/000321072

Article  PubMed  Google Scholar 

Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol-Endocrinol Metabol 257:E567–E572. https://doi.org/10.1152/ajpendo.1989.257.4.E567

Article  CAS  Google Scholar 

Staron RS, Hagerman FC, Hikida RS et al (2000) Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48:623–629. https://doi.org/10.1177/002215540004800506

Article  CAS  PubMed  Google Scholar 

Wahren J, Felig P, Ahlborg G, Jorfeldt L (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50:2715–2725. https://doi.org/10.1172/JCI106772

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wasserman DH (1995) Regulation of glucose fluxes during exercise in the postabsorptive state. Annu Rev Physiol 57:191–218. https://doi.org/10.1146/annurev.ph.57.030195.001203

Article  CAS  PubMed  Google Scholar 

Wasserman DH, Cherrington AD (1991) Hepatic fuel metabolism during muscular work: role and regulation. Am J Physiol-Endocrinol Metabol 260:E811–E824. https://doi.org/10.1152/ajpendo.1991.260.6.E811

Article  CAS  Google Scholar 

Wright DC, Hucker KA, Holloszy JO, Han D-H (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53:330–335. https://doi.org/10.2337/diabetes.53.2.330

Article  CAS  PubMed  Google Scholar 

Wright DC, Geiger PC, Holloszy JO, Han D-H (2005) Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca 2+ -dependent mechanism in slow-twitch rat soleus muscle. Am J Physiol Endocrinol Metabol 288:E1062–E1066. https://doi.org/10.1152/ajpendo.00561.2004

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif