Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms

Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N., et al. (2021). Antibiotic resistance: One health one world outlook. Frontiers in Cellular and Infection Microbiology, 11, 771510.

World Health Organization (2015). Global action plan on antimicrobial resistance, WHO Library Cataloguing-in-Publication Data, ISBN: 9789241509763.

Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., & Blatt, N. L. (2019). World Health Organization report: Current crisis of antibiotic resistance. BioNanoScience, 9, 778–788.

Wainwright, M. (2020). A new penicillin? Antibiotics, 9(3), 117.

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51.

Article  CAS  PubMed  Google Scholar 

Ghosh, C., Sarkar, P., Issa, R., & Haldar, J. (2019). Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends in Microbiology, 27(4), 323–338.

Article  CAS  PubMed  Google Scholar 

Cooper, R., & Kirketerp-Møller, K. (2018). Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. Journal of Wound Care, 27(6), 355–377.

Article  PubMed  Google Scholar 

Pucelik, B., & Dąbrowski, J. M. (2022). Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. Advances in Inorganic Chemistry, 79, 65–108.

Santos, P., Gomes, A. T., Lourenço, L. M., Faustino, M. A., Neves, M. G., & Almeida, A. (2022). Anti-viral photodynamic inactivation of T4-like bacteriophage as a mammalian virus model in blood. International Journal of Molecular Sciences, 23(19), 11548.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almeida, A., Faustino, M. A. F., & Neves, M. G. (2020). Antimicrobial photodynamic therapy in the control of COVID-19. Antibiotics, 9(6), 320.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., et al. (2018). Antimicrobial photodynamic therapy–what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589.

Article  CAS  PubMed  Google Scholar 

Gulías, Ò., McKenzie, G., Bayó, M., Agut, M., & Nonell, S. (2020). Effective photodynamic inactivation of 26 Escherichia coli strains with different antibiotic susceptibility profiles: A planktonic and biofilm study. Antibiotics, 9(3), 98.

Article  PubMed  PubMed Central  Google Scholar 

Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G. P., et al. (2017). Photoantimicrobials—Are we afraid of the light? The Lancet Infectious Diseases, 17(2), e49–e55.

Article  PubMed  Google Scholar 

Ragas, X., Sanchez-Garcia, D., Ruiz-González, R., Dai, T., Agut, M., Hamblin, M. R., et al. (2010). Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. Journal of Medicinal Chemistry, 53(21), 7796–7803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wainwright, M. (2018). Synthetic, small-molecule photoantimicrobials–A realistic approach. Photochemical & Photobiological SCIENCES, 17, 1767–1779.

Article  CAS  Google Scholar 

Dąbrowski, J. M., Pucelik, B., Regiel-Futyra, A., Brindell, M., Mazuryk, O., Kyzioł, A., et al. (2016). Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coordination Chemistry Reviews, 325, 67–101.

Article  Google Scholar 

Alves, E., Faustino, M. A., Neves, M. G., Cunha, A., Nadais, H., & Almeida, A. (2015). Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 22, 34–57.

Article  CAS  Google Scholar 

Vinagreiro, C. S., Zangirolami, A., Schaberle, F. A., Nunes, S. C., Blanco, K. C., Inada, N. M., et al. (2020). Antibacterial photodynamic inactivation of antibiotic-resistant bacteria and biofilms with nanomolar photosensitizer concentrations. ACS Infectious Diseases, 6(6), 1517–1526.

Article  CAS  PubMed  Google Scholar 

Aroso, R. T., Dias, L. D., Blanco, K. C., Soares, J. M., Alves, F., da Silva, G. J., et al. (2022). Synergic dual phototherapy: Cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. Journal of Photochemistry and Photobiology B: Biology, 233, 112499.

Huang, L., El-Hussein, A., Xuan, W., & Hamblin, M. R. (2018). Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology, 178, 277–286.

Article  CAS  PubMed  Google Scholar 

Pucelik, B., Paczyński, R., Dubin, G., Pereira, M. M., Arnaut, L. G., & Dąbrowski, J. M. (2017). Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS ONE, 12(10), e0185984.

Article  PubMed  PubMed Central  Google Scholar 

Revuelta-Maza, M. Á., González-Jiménez, P., Hally, C., Agut, M., Nonell, S., de la Torre, G., et al. (2020). Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. European Journal of Medicinal Chemistry, 187, 111957.

Article  CAS  PubMed  Google Scholar 

Arnaut, L. G., Pereira, M. M., Dąbrowski, J. M., Silva, E. F., Schaberle, F. A., Abreu, A. R., et al. (2014). Photodynamic therapy efficacy enhanced by dynamics: The role of charge transfer and photostability in the selection of photosensitizers. Chemistry–A European Journal, 20(18), 5346–5357.

Pucelik, B., Sułek, A., Drozd, A., Stochel, G., Pereira, M. M., Pinto, S. M., et al. (2020). Enhanced cellular uptake and photodynamic effect with amphiphilic fluorinated porphyrins: The role of sulfoester groups and the nature of reactive oxygen species. International Journal of Molecular Sciences, 21(8), 2786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goslinski, T., & Piskorz, J. (2011). Fluorinated porphyrinoids and their biomedical applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(4), 304–321.

Article  CAS  Google Scholar 

Pandurang, T. P., Cacaccio, J., Durrani, F. A., Dukh, M., Alsaleh, A. Z., Sajjad, M., et al. (2023). A remarkable difference in pharmacokinetics of fluorinated versus iodinated photosensitizers derived from chlorophyll-a and a direct correlation between the tumor uptake and anti-cancer activity. Molecules, 28(9), 3782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Revuelta-Maza, M. A., Nonell, S., De La Torre, G., & Torres, T. (2019). Boosting the singlet oxygen photosensitization abilities of Zn (ii) phthalocyanines through functionalization with bulky fluorinated substituents. Organic & Biomolecular Chemistry, 17(32), 7448–7454.

Article  CAS  Google Scholar 

Dąbrowski, J. M., Pucelik, B., Pereira, M. M., Arnaut, L. G., & Stochel, G. (2015). Towards tuning PDT relevant photosensitizer properties: Comparative study for the free and Zn2+ coordinated meso-tetrakis [2, 6-difluoro-5-(N-methylsulfamylo) phenyl] porphyrin. Journal of Coordination Chemistry, 68(17–18), 3116–3134.

Article  Google Scholar 

Deng, J., Li, H., Yang, M., & Wu, F. (2020). Palladium porphyrin complexes for photodynamic cancer therapy: Effect of porphyrin units and metal. Photochemical & Photobiological Sciences, 19, 905–912.

Article  CAS  Google Scholar 

Kee, H. L., Bhaumik, J., Diers, J. R., Mroz, P., Hamblin, M. R., Bocian, D. F., et al. (2008). Photophysical characterization of imidazolium-substituted Pd (II), In (III), and Zn (II) porphyrins as photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology A: Chemistry, 200(2–3), 346–355.

Article  CAS  PubMed  Google Scholar 

Mroz, P., Bhaumik, J., Dogutan, D. K., Aly, Z., Kamal, Z., Khalid, L., et al. (2009). Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production. Cancer Letters, 282(1), 63–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xuan, W., Huang, L., Wang, Y., Hu, X., Szewczyk, G., Huang, Y. Y., et al. (2019). Amphiphilic tetracationic porphyrins are exceptionally active antimicrobial photosensitizers: In vitro and in vivo studies with the free-base and Pd-chelate. Journal of Biophotonics, 12(8), e201800318.

Article  PubMed  PubMed Central  Google Scholar 

Dąbrowski, J. M., Pucelik, B., Pereira, M. M., Arnaut, L. G., Macyk, W., & Stochel, G. (2015). New hybrid materials based on halogenated metalloporphyrins for enhanced visible light photocatalysis. RSC Advances, 5(113), 93252–93261.

Article  ADS  Google Scholar 

Azzouzi, A.-R., Lebdai, S., Benzaghou, F., & Stief, C. (2015). Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: Standardization of the procedure. World Journal of Urology, 33, 937–944.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scherz, A., & Salomon, Y. (2013). The story of Tookad: From bench to bedside, Handbook of Photomedicine, Taylor & Francis eBook, 459–474, ISBN: 9780429193842.

Hamblin, M. R., & Hasan, T. (2004). Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 3(5), 436–450.

Article  CAS  Google Scholar 

Sułek, A., Pucelik, B., Kobielusz, M., Barzowska, A., & Dąbrowski, J. M. (2020). Photodynamic inactivation of bacteria with porphyrin derivatives: Effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro. International Journal of Molecular Sciences, 21(22), 8716.

Article  PubMed  PubMed Central  Google Scholar 

Silva, J. N., Silva, A. M., Tomé, J. P., Ribeiro, A. O., Domingues, M. R. M., Cavaleiro, J. A., et al. (2008). Photophysical properties of a photocytotoxic fluorinated chlorin conjugated to four β-cyclodextrins. Photochemical & Photobiological Sciences, 7(7), 834–843.

Article  CAS  Google Scholar 

Ribeiro, C. P., Faustino, M. A., Almeida, A., & Lourenço, L. M. (2022). The Antimicrobial photoinactivation effect on Escherichia coli through the action of inverted cationic porphyrin-cyclodextrin conjugates. Microorganisms, 10(4), 718.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribeiro, C. P., Gamelas, S. R., Faustino, M. A., Gomes, A. T., Tome, J. P., Almeida, A., et al. (2020). Unsymmetrical cationic porphyrin-cyclodextrin bioconjugates for photoinactivation of Escherichia coli. Photodiagnosis and Photodynamic Therapy, 31, 101788.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif