Dynamic alterations in M2 macrophage subtypes enhance flap expansion efficiency and tissue regeneration

Wang, Q., Song, W., Hou, D., & Wang, J. (2015). Expanded forehead flaps for reconstruction of different faciocervical units: selection of flap types based on 143 cases. Plastic and Reconstructive Surgery, 135, 1461–1471.

Article  CAS  Google Scholar 

Nemet, A. Y. (2016). The etiology of epiphora: a multifactorial issue. Seminars in Ophthalmology, 31, 275–9.

Google Scholar 

Gabriel, A., Champaneria, M. C., & Maxwell, G. P. (2015). The efficacy of botulinum toxin A in post-mastectomy breast reconstruction: a pilot study. Aesthetic Surgery Journal, 35, 402–9.

Article  Google Scholar 

Tang, Y., Luan, J., & Zhang, X. (2004). Accelerating tissue expansion by application of topical papaverine cream. Plastic and Reconstructive Surgery, 114, 1166–9.

Article  Google Scholar 

Zhou, S. B., Zhang, G. Y., Xie, Y., Zan, T., Gan, Y. K., Yao, C. A., Chiang, C. A., Wang, J., Liu, K., Li, H., Zhou, J., Yang, M., Gu, B., Xie, F., Pu, L. Q., Magee, 3rd, W. P., & Li, Q. F. (2016). Autologous stem cell transplantation promotes mechanical stretch induced skin regeneration: a randomized phase I/II clinical trial. EBioMedicine, 13, 356–364.

Article  PubMed Central  Google Scholar 

Gratchev, A., Guillot, P., Hakiy, N., Politz, O., Orfanos, C. E., Schledzewski, K., & Goerdt, S. (2001). Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scandinavian Journal of Immunology, 53, 386–92.

Article  CAS  Google Scholar 

Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233, 6425–6440.

Article  CAS  Google Scholar 

Recalcati, S., Gammella, E., Buratti, P., Doni, A., Anselmo, A., Locati, M., & Cairo, G. (2019). Macrophage ferroportin is essential for stromal cell proliferation in wound healing. Haematologica, 104, 47–58.

Article  CAS  PubMed Central  Google Scholar 

Rota, C., Morigi, M., Cerullo, D., Introna, M., Colpani, O., Corna, D., Capelli, C., Rabelink, T. J., Leuning, D. G., Rottoli, D., Benigni, A., Zoja, C., & Remuzzi, G. (2018). Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Research & Therapy, 9, 220.

Article  CAS  Google Scholar 

Talman, V., & Ruskoaho, H. (2016). Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell and Tissue Research, 365, 563–81.

Article  CAS  PubMed Central  Google Scholar 

Li, M., Sun, X., Zhao, J., Xia, L., Li, J., Xu, M., Wang, B., Guo, H., Yu, C., Gao, Y., Wu, H., Kong, X., & Xia, Q. (2020). CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cellular & Molecular Immunology, 17, 753–764.

Article  CAS  Google Scholar 

Ross, J. R., Saunders, Y., Edmonds, P. M., Patel, S., Wonderling, D., Normand, C. & & Broadley, K. (2004). A systematic review of the role of bisphosphonates in metastatic disease. Health Technology Assessment, 8, 1–176.

Article  CAS  Google Scholar 

Rogers, M. J., Gordon, S., Benford, H. L., Coxon, F. P., Luckman, S. P., Monkkonen, J., & Frith, J. C. (2000). Cellular and molecular mechanisms of action of bisphosphonates. Cancer, 88, 2961–78.

Article  CAS  Google Scholar 

Wang, F. H., Hsieh, C. Y., Shen, C. I., Chuang, C. H., Chung, Y. H., Kuo, C. C., Lee, K. D., Lin, C. L., & Su, H. L. (2022). Induction of type II collagen expression in M2 macrophages derived from peripheral blood mononuclear cells. Scientific Reports, 12, 21663.

Article  ADS  PubMed Central  Google Scholar 

Tyner, J. W., Uchida, O., Kajiwara, N., Kim, E. Y., Patel, A. C., O’Sullivan, M. P., Walter, M. J., Schwendener, R. A., Cook, D. N., Danoff, T. M., & Holtzman, M. J. (2005). CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Medicine, 11, 1180–7.

Article  CAS  PubMed Central  Google Scholar 

Batbold, D., Shinoda, M., Honda, K., Furukawa, A., Koizumi, M., Akasaka, R., Yamaguchi, S., & Iwata, K. (2017). Macrophages in trigeminal ganglion contribute to ectopic mechanical hypersensitivity following inferior alveolar nerve injury in rats. Journal of Neuroinflammation, 14, 249.

Article  PubMed Central  Google Scholar 

Cai, J., Feng, J., Liu, K., Zhou, S., & Lu, F. (2018). Early macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plastic and Reconstructive Surgery, 141, 376–386.

Article  CAS  Google Scholar 

Stoneman, V., Braganza, D., Figg, N., Mercer, J., Lang, R., Goddard, M., & Bennett, M. (2007). Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circulation Research, 100, 884–93.

Article  CAS  PubMed Central  Google Scholar 

König, S., Nitzki, F., Uhmann, A., Dittmann, K., Theiss-Suennemann, J., Herrmann, M., Reichardt, H. M., Schwendener, R., Pukrop, T., Schulz-Schaeffer, W., & Hahn, H. (2014). Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS ONE, 9, e93555.

Article  ADS  PubMed Central  Google Scholar 

Jaguin, M., Houlbert, N., Fardel, O., & Lecureur, V. (2013). Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology, 281, 51–61.

Article  CAS  Google Scholar 

Zhang, A., Qian, Y., Ye, Z., Chen, H., Xie, H., Zhou, L., Shen, Y., & Zheng, S. (2017). Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Medicine, 6, 463–470.

Article  CAS  PubMed Central  Google Scholar 

Ushach, I., & Zlotnik, A. (2016). Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. Journal of Leukocyte Biology, 100, 481–9.

Article  CAS  PubMed Central  Google Scholar 

Huang, Z., Ding, J., Song, Y., Liu, W., Dong, C., Zhang, Y., Wang, T., Du, J., Xiong, S., He, Q., Yu, Z. & & Ma, X. (2023). Macrophage contribution to the survival of transferred expanded skin flap through angiogenesis. Annals of Translational Medicine, 11, 248

Article  CAS  PubMed Central  Google Scholar 

Ding, J., Lei, L., Liu, S., Zhang, Y., Yu, Z., Su, Y. & & Ma, X. (2019). Macrophages are necessary for skin regeneration during tissue expansion. Journal of Translational Medicine, 17, 36

Article  PubMed Central  Google Scholar 

Bouhlel, M. A., Derudas, B., Rigamonti, E., Dièvart, R., Brozek, J., Haulon, S., Zawadzki, C., Jude, B., Torpier, G., Marx, N., Staels, B., & Chinetti-Gbaguidi, G. (2007). PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism, 6, 137–43.

Article  CAS  Google Scholar 

Waldo, S. W., Li, Y., Buono, C., Zhao, B., Billings, E. M., Chang, J., & Kruth, H. S. (2008). Heterogeneity of human macrophages in culture and in atherosclerotic plaques. The American Journal of Pathology, 172, 1112–26.

Article  PubMed Central  Google Scholar 

Tacke, F., Ginhoux, F., Jakubzick, C., van Rooijen, N., Merad, M., & Randolph, G. J. (2006). Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. Journal of Experimental Medicine, 203, 583–97.

Article  CAS  PubMed Central  Google Scholar 

De Filippo, R. E., & Atala, A. (2002). Stretch and growth: the molecular and physiologic influences of tissue expansion. Plastic and Reconstructive Surgery, 109, 2450–62.

Article  Google Scholar 

Yang, M., Li, Q., Sheng, L., Li, H., Weng, R., & Zan, T. (2011). Bone marrow-derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion. Annals of Surgery, 253, 202–9.

Article  Google Scholar 

Mirza, R., DiPietro, L. A., & Koh, T. J. (2009). Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology, 175, 2454–62.

Article  CAS  PubMed Central  Google Scholar 

Evans, B. J., Haskard, D. O., Sempowksi, G., & Landis, R. C. (2013). Evolution of the macrophage CD163 phenotype and cytokine profiles in a human model of resolving inflammation. International Journal of Inflammation, 2013, 780502.

Article  PubMed Central  Google Scholar 

Austad, E. D. (1987). The origin of expanded tissue. Clinics in Plastic Surgery, 14, 431–3.

Article  CAS  Google Scholar 

Minutti, C. M., Knipper, J. A., Allen, J. E., & Zaiss, D. M. (2017). Tissue-specific contribution of macrophages to wound healing. Seminars in Cell and Developmental Biology, 61, 3–11.

Article  CAS  Google Scholar 

Fleming, J. M., Miller, T. C., Kidacki, M., Ginsburg, E., Stuelten, C. H., Stewart, D. A., Troester, M. A. & & Vonderhaar, B. K. (2012). Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo. Breast Cancer Research, 14, R97

Article  CAS  PubMed Central  Google Scholar 

Chow, F. Y., Nikolic-Paterson, D. J., Atkins, R. C. & & Tesch, G. H. (2004). Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrology Dialysis Transplantation, 19, 2987–96.

Article  CAS  Google Scholar 

Johnson, P. E., Kernahan, D. A., & Bauer, B. S. (1988). Dermal and epidermal response to soft-tissue expansion in the pig. Plastic and Reconstructive Surgery, 81, 390–7.

Article  CAS  Google Scholar 

Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.

Article  PubMed Central  Google Scholar 

van Nieuw Amerongen, G. P., Koolwijk, P., Versteilen, A., & van Hinsbergh, V. W. (2003). Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 211–7.

Article  Google Scholar 

Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., Roers, A. & & Eming, S. A. (2010). Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology, 184, 3964–77.

留言 (0)

沒有登入
gif