Role of biophysics and mechanobiology in podocyte physiology

Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

Article  CAS  PubMed  Google Scholar 

Ning, L., Suleiman, H. Y. & Miner, J. H. Synaptopodin is dispensable for normal podocyte homeostasis but is protective in the context of acute podocyte injury. J. Am. Soc. Nephrol. 31, 2815–2832 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kriz, W. & Lemley, K. V. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 (2015).

Article  PubMed  Google Scholar 

Steinhausen, M., Endlich, K. & Wiegman, D. L. Glomerular blood flow. Kidney Int. 38, 769–784 (1990).

Article  CAS  PubMed  Google Scholar 

Collard, D. et al. Estimation of intraglomerular pressure using invasive renal arterial pressure and flow velocity measurements in humans. J. Am. Soc. Nephrol. 31, 1905–1914 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endlich, N. & Endlich, K. The challenge and response of podocytes to glomerular hypertension. Semin. Nephrol. 32, 327–341 (2012).

Article  CAS  PubMed  Google Scholar 

Butt, L. et al. A mathematical estimation of the physical forces driving podocyte detachment. Kidney Int. 100, 1054–1062 (2021).

Article  PubMed  Google Scholar 

Levey, A. S., Coresh, J., Tighiouart, H., Greene, T. & Inker, L. A. Measured and estimated glomerular filtration rate: current status and future directions. Nat. Rev. Nephrol. 16, 51–64 (2020).

Article  PubMed  Google Scholar 

Mammoto, A., Mammoto, T. & Ingber, D. E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061–3073 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Forst, A.-L. et al. Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J. Am. Soc. Nephrol. 27, 848–862 (2016).

Article  CAS  PubMed  Google Scholar 

Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T. & Dryer, S. E. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol. Cell Physiol. 305, C276–C289 (2013).

Article  CAS  PubMed  Google Scholar 

Schultz, K. et al. Piezo mediates Rho activation and actin stress fibre formation in Drosophila nephrocytes. Preprint at bioRxiv https://doi.org/10.1101/2021.10.23.465463 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Dalghi, M. G. et al. Expression and distribution of PIEZO1 in the mouse urinary tract. Am. J. Physiol. Ren. Physiol. 317, F303–F321 (2019).

Article  CAS  Google Scholar 

Ziegler, W. H., Liddington, R. C. & Critchley, D. R. The structure and regulation of vinculin. Trends Cell Biol. 16, 453–460 (2006).

Article  CAS  PubMed  Google Scholar 

Burridge, K. Talin: a protein designed for mechanotransduction. Emerg. Top. Life Sci. 2, 673–675 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eng, D. G. et al. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 88, 999–1012 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaverina, N. V., Eng, D. G., Schneider, R. R., Pippin, J. W. & Shankland, S. J. Partial podocyte replenishment in experimental FSGS derives from nonpodocyte sources. Am. J. Physiol. Ren. Physiol. 310, F1397–F1413 (2016).

Article  CAS  Google Scholar 

Kaverina, N. V. et al. Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int. 96, 597–611 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melica, M. E. et al. Differentiation of crescent-forming kidney progenitor cells into podocytes attenuates severe glomerulonephritis in mice. Sci. Transl. Med. 14, eabg3277 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941 (2005).

Article  CAS  PubMed  Google Scholar 

Wanner, N. et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J. Am. Soc. Nephrol. 25, 707 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puelles, V. G. et al. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 4, e99271 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte’s response to stress: the enigma of foot process effacement. Am. J. Physiol. Ren. Physiol. 304, F333–F347 (2012).

Article  Google Scholar 

Basgen, J. M., Wong, J. S., Ray, J., Nicholas, S. B. & Campbell, K. N. Podocyte foot process effacement precedes albuminuria and glomerular hypertrophy in CD2-associated protein deficient mice. Front. Med. 8, 745319 (2021).

Article  Google Scholar 

Butt, L. et al. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2, 461–474 (2020).

Article  CAS  PubMed  Google Scholar 

Jiang, S. et al. An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Sci. Adv. 8, eabn6027 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suleiman, H. Y. et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2, e94137 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Vivarelli, M., Massella, L., Ruggiero, B. & Emma, F. Minimal change disease. Clin. J. Am. Soc. Nephrol. 12, 332–345 (2017).

Article  CAS  PubMed  Google Scholar 

Tullus, K., Webb, H. & Bagga, A. Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child. Adolesc. Health 2, 880–890 (2018).

Article  PubMed  Google Scholar 

Maas, R. J., Deegens, J. K., Smeets, B., Moeller, M. J. & Wetzels, J. F. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat. Rev. Nephrol. 12, 768–776 (2016).

Article  PubMed  Google Scholar 

Azeloglu, E. U. et al. Interconnected network motifs control podocyte morphology and kidney function. Sci. Signal. 7, ra12 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Shiiki, H. et al. Cell proliferation and apoptosis of the glomerular epithelial cells in rats with puromycin aminonucleoside nephrosis. Pathobiology 66, 221–229 (1998).

Article  CAS  PubMed  Google Scholar 

Fogo, A. B. Animal models of FSGS: lessons for pathogenesis and treatment. Semin. Nephrol. 23, 161–171 (2003).

Article  CAS  PubMed  Google Scholar 

Calizo, R. C. et al. Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity. Nat. Commun. 10, 2061 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Embry, A. E. et al. Similar biophysical abnormalities in glomeruli and podocytes from two distinct models. J. Am. Soc. Nephrol. 29, 1501–1512 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogelmann, S. U., Nelson, W. J., Myers, B. D. & Lemley, K. V. Urinary excretion of viable podocytes in health and renal disease. Am. J. Physiol. -Ren. Physiol. 285, F40–F48 (2003).

Article  CAS  Google Scholar 

Wozniak, M. A., Modzelewska, K., Kwong, L. & Keely, P. J. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta Mol. Cell Res. 1692, 103–119 (2004).

Article  CAS  Google Scholar 

Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif