Cost and performance analysis as a valuable tool for battery material research

Mauler, L., Duffner, F. & Leker, J. Economies of scale in battery cell manufacturing: the impact of material and process innovations. Appl. Energy 286, 116499 (2021).

Article  Google Scholar 

Duffner, F., Wentker, M., Greenwood, M. & Leker, J. Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020).

Article  Google Scholar 

Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016).

Article  CAS  Google Scholar 

Greenwood, M., Wentker, M. & Leker, J. A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon–graphite composite anodes. J. Power Sources Adv. 9, 100055 (2021).

Article  CAS  Google Scholar 

Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

Article  ADS  Google Scholar 

Mauler, L., Duffner, F., Zeier, W. G. & Leker, J. Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ. Sci. 14, 4712–4739 (2021).

Article  Google Scholar 

Moon, H. et al. Bio-waste-derived hard carbon anodes through a sustainable and cost-effective synthesis process for sodium-ion batteries. ChemSusChem 16, e202201713 (2023).

Article  CAS  PubMed  Google Scholar 

Yalman, E. et al. Optimization of electrochemical presodiation parameters of Na‐ion full cells for stable solid–electrolyte interface formation: hard carbon rods from waste firefighter suits. Energy Technol. 11, 2300014 (2023).

Article  CAS  Google Scholar 

Zhang, R. et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry. Nat. Energy 8, 695–702 (2023).

Article  ADS  CAS  Google Scholar 

Innocenti, A. et al. Practical cell design for PTMA-based organic batteries: an experimental and modeling study. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.3c11838 (2023).

Johansson, P. et al. Ten ways to fool the masses when presenting battery research. Batter. Supercaps 4, 1785–1788 (2021).

Article  Google Scholar 

Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

Article  ADS  CAS  PubMed  Google Scholar 

Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

Article  ADS  CAS  Google Scholar 

Greim, P., Solomon, A. A. & Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 11, 4570 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zuo, W. et al. Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Acc. Chem. Res. 56, 284–296 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, Y. et al. Promises and challenges of next-generation ‘beyond Li-ion’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

Article  CAS  PubMed  Google Scholar 

Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

Article  ADS  CAS  Google Scholar 

Roberts, S. & Kendrick, E. The re-emergence of sodium ion batteries: testing, processing, and manufacturability. Nanotechnol. Sci. Appl. 11, 23–33 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tapia-Ruiz, N. et al. 2021 roadmap for sodium-ion batteries. J. Phys. Energy 3, 031503 (2021).

Article  ADS  CAS  Google Scholar 

Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

Article  CAS  PubMed  Google Scholar 

Zhu, K. et al. How far away are lithium–sulfur batteries from commercialization? Front. Energy Res. 7, 123 (2019).

Article  Google Scholar 

Maroni, F., Dongmo, S., Gauckler, C., Marinaro, M. & Wohlfahrt-Mehrens, M. Through the maze of multivalent‐ion batteries: a critical review on the status of the research on cathode materials for Mg2+ and Ca2+ ions insertion. Batter. Supercaps 4, 1221–1251 (2021).

Article  CAS  Google Scholar 

Elia, G. A. et al. An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 228870 (2021).

Article  CAS  Google Scholar 

Zhang, L., Wang, H., Zhang, X. & Tang, Y. A review of emerging dual‐ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31, 2010958 (2021).

Article  CAS  Google Scholar 

Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).

Article  CAS  Google Scholar 

Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

Article  CAS  Google Scholar 

Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

Article  CAS  PubMed  Google Scholar 

Esser, B. et al. A perspective on organic electrode materials and technologies for next generation batteries. J. Power Sources 482, 228814 (2021).

Article  CAS  Google Scholar 

Rudola, A. et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey outlook. J. Mater. Chem. A 9, 8279–8302 (2021).

Article  CAS  Google Scholar 

CATL. CATL unveils its latest breakthrough technology by releasing its first generation of sodium-ion batteries. CATL https://www.catl.com/en/news/665.html (2021).

Sapunkov, O., Pande, V., Khetan, A., Choomwattana, C. & Viswanathan, V. Quantifying the promise of ‘beyond’ Li–ion batteries. Transl. Mater. Res. 2, 045002 (2015).

Article  Google Scholar 

Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784–800 (2015).

Article  CAS  PubMed  Google Scholar 

Raccichini, R., Varzi, A., Wei, D. & Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29, 1603421 (2017).

Article  Google Scholar 

Parker, J. F., Ko, J. S., Rolison, D. R. & Long, J. W. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018).

Article  CAS  Google Scholar 

Wentker, M., Greenwood, M. & Leker, J. A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies 12, 504 (2019).

Article  CAS  Google Scholar 

Knehr, K., Kubal, J., Nelson, P. & Ahmed, S. Battery performance and cost modeling for electric-drive vehicles: a manual for BatPaC v5.0 (US Department of Energy, 2022).

Knehr, K. W., Kubal, J. J., Deva, A., Effat, M. B. & Ahmed, S. From material properties to device metrics: a data-driven guide to battery design. Energy Adv. 2, 1326–1350 (2023).

Article  Google Scholar 

Belt, J. R. Battery test manual for plug-in hybrid electric vehicles (US Department of Energy, 2010).

Christophersen, J. P. Battery test manual for electric vehicles (US Department of Energy, 2015).

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Xie, F., Xu, Z., Guo, Z. & Titirici, M.-M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy Combust. Sci. 2, 042002 (2020).

Article  Google Scholar 

Moon, H. et al. Assessing the reactivity of hard carbon anodes: linking material properties with electrochemical response upon sodium‐ and lithium‐ion storage. Batter. Supercaps 4, 960–977 (2021).

Article  CAS  Google Scholar 

Asenbauer, J. et al. The success story of graphite as a lithium-ion anode material — fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4, 5387–5416 (2020).

Article  CAS  Google Scholar 

Fang, S., Bresser, D. & Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium‐ and sodium‐ion batteries. Adv. Energy Mater. 10, 1902485 (2020).

Article  CAS  Google Scholar 

Lakraychi, A. E., Dolhem, F., Vlad, A. & Becuwe, M. Organic negative electrode materials for metal‐ion and molecular‐ion batteries: progress and challenges from a molecular engineering perspective. Adv. Energy Mater. 11, 2101562 (2021).

Article  CAS  Google Scholar 

Zarrabeitia, M. et al. Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Commun. Chem. 5, 11 (2022).

留言 (0)

沒有登入
gif