Genetics of chronic respiratory disease

GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Resp. Med. 8, 585–596 (2020). A key study highlighting the global importance of respiratory diseases.

Article  Google Scholar 

GBD Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 5, 691–706 (2017).

Article  Google Scholar 

Duan, K. I. et al. Health care spending on respiratory diseases in the United States, 1996–2016. Am. J. Resp. Crit. Care Med. 207, 183–192 (2023).

Article  PubMed  Google Scholar 

Spencer, L. G., Loughenbury, M., Chaudhuri, N., Spiteri, M. & Parfrey, H. Idiopathic pulmonary fibrosis in the UK: analysis of the British Thoracic Society electronic registry between 2013 and 2019. ERJ Open Res. 7, 00187–2020 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Navaratnam, V. et al. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax 66, 462–467 (2011).

Article  CAS  PubMed  Google Scholar 

Palmer, L. J. et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur. Resp. J. 17, 696–702 (2001).

Article  CAS  Google Scholar 

Wilk, J. B. et al. Evidence for major genes influencing pulmonary function in the NHLBI family heart study. Genet. Epidemiol. 19, 81–94 (2000).

Article  CAS  PubMed  Google Scholar 

Shrine, N. et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51, 481–493 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakornsakolpat, P. et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51, 494–505 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wain, L. V. et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 49, 416–425 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

Article  CAS  PubMed  Google Scholar 

Cho, M. H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Resp. Med. 2, 214–225 (2014).

Article  CAS  Google Scholar 

Soler Artigas, M. et al. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat. Commun. 6, 8658 (2015).

Article  PubMed  Google Scholar 

Wain, L. V. et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Resp. Med. 3, 769–781 (2015). This study was the first GWAS in the UK Biobank.

Article  Google Scholar 

Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 49, 426–432 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, X. et al. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nat. Commun. 11, 5182 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). This influential study showed that supporting genetic data contributes to successful drug development.

Article  CAS  PubMed  Google Scholar 

Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021). This paper provided a description of the degree of relationship between phenotypes using GWAS data.

Article  CAS  PubMed  Google Scholar 

Zhou, Y. H. et al. Genetic modifiers of cystic fibrosis lung disease severity: whole-genome analysis of 7,840 patients. Am. J. Resp. Crit. Care Med. 207, 1324–1333 (2023).

Article  CAS  PubMed  Google Scholar 

Rhodes, C. J. et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Resp. Med. 7, 227–238 (2019).

Article  Google Scholar 

Shrine, N. et al. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat. Genet. 55, 410–422 (2023). This study is the largest so far to assess lung-function phenotypes using GWASs and integrated genomics.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hancock, D. B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

Article  CAS  PubMed  Google Scholar 

Herwig, R., Hardt, C., Lienhard, M. & Kamburov, A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat. Protoc. 11, 1889–1907 (2016).

Article  CAS  PubMed  Google Scholar 

Lange, P. et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 373, 111–122 (2015). This important epidemiological study revealed the origins of COPD risk in early life.

Article  CAS  PubMed  Google Scholar 

Hardin, M. et al. A genome-wide analysis of the response to inhaled β2-agonists in chronic obstructive pulmonary disease. Pharmacogenom. J. 16, 326–335 (2016).

Article  CAS  Google Scholar 

Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017). This study emphasized the value of trans-ethic approaches for GWASs.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

Article  CAS  PubMed  Google Scholar 

Regan, E. A. et al. Genetic epidemiology of COPD (COPDGene) study design. J. COPD 7, 32–43 (2010). This paper reports a description of the COPDGene study design.

Article  Google Scholar 

Ragland, M. F. et al. 10-year follow-up of lung function, respiratory symptoms, and functional capacity in the COPDGene study. Ann. Am. Thorac. Soc. 19, 381–388 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Joo, J., Hobbs, B. D., Cho, M. H. & Himes, B. E. Trait insights gained by comparing genome-wide association study results using different chronic obstructive pulmonary disease definitions. AMIA Jt Summits Transl. Sci. Proc. 2020, 278–287 (2020).

PubMed  PubMed Central  Google Scholar 

Cho, M. H. et al. A genome-wide association study of emphysema and airway quantitative imaging phenotypes. Am. J. Resp. Crit. Care Med. 192, 559–569 (2015). This GWAS included imaging phenotypes in COPD.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busch, R. et al. Genetic association and risk scores in a chronic obstructive pulmonary disease meta-analysis of 16,707 subjects. Am. J. Resp. Cell Mol. Biol. 57, 35–46 (2017).

Article  CAS  Google Scholar 

North, T. L. et al. A study of common Mendelian disease carriers across ageing British cohorts: meta-analyses reveal heterozygosity for α1-antitrypsin deficiency increases respiratory capacity and height. J. Med. Genet. 53, 280–288 (2016).

Article  CAS  PubMed  Google Scholar 

Fawcett, K. A. et al. Pleiotropic associations of heterozygosity for the SERPINA1 Z allele in the UK Biobank. ERJ Open Res. 7, 00049–2021 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kim, W. et al. Assessing the contribution of rare genetic variants to phenotypes of chronic obstructive pulmonary disease using whole-genome sequence data. Hum. Mol. Genet. 31, 3873–3885 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

留言 (0)

沒有登入
gif