Constant light and pinealectomy disrupt daily rhythm in song production and negatively impact reproductive performance in zebra finches

Foster, R. G., & Kreitzman, L. (2014). The rhythms of life: What your body clock means to you! Experimental Physiology, 99(4), 599–606. https://doi.org/10.1113/expphysiol.2012.071118

Article  Google Scholar 

Kumar, V., Wingfield, J. C., Dawson, A., Ramenofsky, M., Rani, S., & Bartell, P. (2010). Biological clocks and regulation of seasonal reproduction and migration in birds. Physiological and Biochemical Zoology, 83, 827–835. https://doi.org/10.1086/652243

Article  Google Scholar 

Pittendrigh, C. S. (1993). Temporal organization: Reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55(1), 17–54. https://doi.org/10.1146/annurev.ph.55.030193.000313

Article  Google Scholar 

Aschoff, J. (1981). Freerunning and entrained circadian rhythms. Biological rhythms. Springer. https://doi.org/10.1007/978-1-4615-6552-9_6

Book  Google Scholar 

Avey, M. T., Quince, A. F., & Sturdy, C. B. (2008). Seasonal and diurnal patterns of black-capped chickadee (Poecile atricapillus) vocal production. Behavioural Processes, 77(2), 149–155. https://doi.org/10.1016/j.beproc.2007.12.004

Article  Google Scholar 

Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Biological themes and variations. Cambridge University Press. https://doi.org/10.1017/CBO9780511754791

Article  Google Scholar 

Derégnaucourt, S., Saar, S., & Gahr, M. (2012). Melatonin affects the temporal pattern of vocal signatures in birds. Journal of Pineal Research, 53(3), 245–258. https://doi.org/10.1111/j.1600-079X.2012.00993.x

Article  Google Scholar 

Leitner, S., Voigt, C., & Gahr, M. (2001). Seasonal changes in the song pattern of the non-domesticated island canary (Serinus canaria), a field study. Behaviour, 138(7), 885–904. https://doi.org/10.1163/156853901753172700

Article  Google Scholar 

Cassone, V. M., & Westneat, D. F. (2012). The bird of time: Cognition and the avian biological clock. Frontiers in Molecular Neuroscience, 5, 32. https://doi.org/10.3389/fnmol.2012.00032

Article  PubMed Central  Google Scholar 

Jansen, R., Metzdorf, R., van der Roest, M., Fusani, L., ter Maat, A., & Gahr, M. (2005). Melatonin affects the temporal organization of the song of the zebra finch. The FASEB Journal, 19(7), 848–850. https://doi.org/10.1096/fj.04-2874fje

Article  Google Scholar 

Jha, N. A., & Kumar, V. (2017). Female conspecifics restore rhythmic singing behaviour in arrhythmic male zebra finches. Journal of Biosciences, 42(1), 139–147. https://doi.org/10.1007/s12038-017-9664-y

Article  Google Scholar 

Wang, G., Harpole, C. E., Trivedi, A. K., & Cassone, V. M. (2012). Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch. Journal of Biological Rhythms, 27(2), 145–155. https://doi.org/10.1177/0748730411435965

Article  Google Scholar 

Kumar, V., Singh, B. P., & Rani, S. (2004). The bird clock: A complex, multi-oscillatory and highly diversified system. Biological Rhythm Research, 35(1–2), 121–144. https://doi.org/10.1080/09291010412331313287

Article  Google Scholar 

Kumar, V., & Singh, B. (2005). The timekeeping system in birds. Proceedings of the Indian National Science Academy B, 71(5/6), 267.

Google Scholar 

Gwinner, E., Hau, M., & Heigl, S. (1997). Melatonin: Generation and modulation of avian circadian rhythms. Brain Research Bulletin, 44(4), 439–444. https://doi.org/10.1016/s0361-9230(97)00224-4

Article  Google Scholar 

Kumar, V. (2001). Melatonin and circadian rhythmicity in birds. In A. Dawson & C. M. Chaturvedi (Eds.), Avian endocrinology (pp. 93–112). Narosa Publ.

Google Scholar 

Kumar, V., Singh, S., Misra, M., Malik, S., & Rani, S. (2002). Role of melatonin in photoperiodic time measurement in the migratory redheaded bunting (Emberiza bruniceps) and the nonmigratory Indian weaver bird (Ploceus philippinus). Journal of Experimental Zoology, 292, 277–286. https://doi.org/10.1002/jez.10079

Article  Google Scholar 

Kumar, V., & Gwinner, E. (2005). Pinealectomy shortens resynchronisation times of house sparrow (Passer domesticus) circadian rhythms. Naturwissenschaften, 92, 419–422. https://doi.org/10.1007/s00114-005-0009-6

Article  ADS  Google Scholar 

Rani, S., Malik, S., Trivedi, A. K., Singh, S., & Kumar, V. (2006). A circadian clock regulates migratory restlessness in the blackheaded bunting, Emberiza melanocephala. Current Science, 91, 1093–1096.

Google Scholar 

Trivedi, A. K., Malik, S., Rani, S., & Kumar, V. (2016). Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird. Physiology & Behavior, 156, 156–163. https://doi.org/10.1016/j.physbeh.2016.01.019

Article  Google Scholar 

Singh, J., Rani, S., & Kumar, V. (2012). Functional similarity in relation to the external environment between circadian behavioral and melatonin rhythms in the subtropical Indian weaver bird. Hormones and Behavior, 61, 527–534. https://doi.org/10.1016/j.yhbeh.2012.01.015

Article  Google Scholar 

Nordeen, K. W., & Nordeen, E. J. (1992). Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behavioral and Neural Biology, 57(1), 58–66. https://doi.org/10.1016/0163-1047(92)90757-u

Article  Google Scholar 

Scharff, C., & Nottebohm, F. (1991). A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning. Journal of Neuroscience, 11(9), 2896–2913. https://doi.org/10.1523/jneurosci.11-09-02896.1991

Article  Google Scholar 

Williams, H. (2004). Birdsong and singing behavior. Annals of the New York Academy of Sciences, 1016(1), 1–30. https://doi.org/10.1196/annals.1298.029

Article  ADS  MathSciNet  Google Scholar 

Ollason, J. C., & Slater, P. J. (1973). Changes in the behaviour of the male zebra finch during a 12-hr day. Animal Behaviour, 21(1), 191–196. https://doi.org/10.1016/S0003-3472(73)80059-4

Article  Google Scholar 

Kumar, V., Gwinner, E., & Van’t Hof, T. (2000). Circadian rhythms of melatonin in European starlings exposed to different lighting conditions: Relationship with locomotor and feeding rhythms. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 186(2), 205–215. https://doi.org/10.1007/s003590050020

Article  Google Scholar 

Jha, N. A., & Kumar, V. (2017). Effect of no-night light environment on behaviour, learning performance and personality in zebra finches. Animal Behaviour, 132, 29–47. https://doi.org/10.1016/j.anbehav.2017.07.017

Article  Google Scholar 

Prabhat, A., Malik, I., Jha, N. A., Bhardwaj, S. K., & Kumar, V. (2020). Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights in mechanisms of metabolic adaptation to aperiodic environment in diurnal animals. Journal of Photochemistry and Photobiology, B: Biology, 211, 111995. https://doi.org/10.1016/j.jphotobiol.2020.111995

Article  Google Scholar 

Rani, S., Singh, S., Malik, S., Singh, J., & Kumar, V. (2009). Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: Role of pineal. Chronobiology International, 26(4), 653–665. https://doi.org/10.1080/07420520902926009

Article  Google Scholar 

Wada, H., Salvante, K. G., Stables, C., Wagner, E., Williams, T. D., & Breuner, C. W. (2008). Adrenocortical responses in zebra finches (Taeniopygia guttata): Individual variation, repeatability, and relationship to phenotypic quality. Hormones and Behavior, 53, 472–480. https://doi.org/10.1016/j.yhbeh.2007.11.018

Article  Google Scholar 

Mishra, I., & Kumar, V. (2019). The quantity–quality trade-off: Differential effects of daily food availability times on reproductive performance and offspring quality in diurnal zebra finches. Journal of Experimental Biology, 222, jeb196667. https://doi.org/10.1242/jeb.196667

Article  Google Scholar 

Jha, N. A., Taufique, S. T., & Kumar, V. (2021). Born without night: The consequence of the no-night environment on reproductive performance in diurnal zebra finches. Journal of Experimental Biology, 224(24), jeb242996. https://doi.org/10.1242/jeb.242996

Article  Google Scholar 

Lynn, S. E., Perfito, N., Guardado, D., & Bentley, G. E. (2015). Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata). General and Comparative Endocrinology, 215, 1–9. https://doi.org/10.1016/j.ygcen.2015.03.010

Article  Google Scholar 

Taufique, S. T., Prabhat, A., & Kumar, V. (2018). Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. European Journal of Neuroscience, 48, 3005–3018. https://doi.org/10.1111/ejn.14157

Article  Google Scholar 

Singh, J., Rani, S., & Kumar, V. (2010). Presence of a conspecific renders survival advantages in the migratory redheaded bunting: Test through the effects of restricted feeding on circadian response and survivorship. Chronobiology International, 27, 111–127. https://doi.org/10.3109/07420520903399680

Article  ADS  Google Scholar 

Saar, S., & Mitra, P. P. (2008). A technique for characterizing the development of rhythms in bird song. PLoS ONE, 3, e1461. https://doi.org/10.1371/journal.pone.0001461

Article  ADS  PubMed Central  Google Scholar 

Zann, R. A. (1996). The zebra finch: A synthesis of field and laboratory studies. Oxford University Press.

Book  Google Scholar 

Williams, H., & Mehta, N. (1999). Changes in adult zebra finch song require a forebrain nucleus that is not necessary for song production. Journal of Neurobiology, 39, 14–28. https://doi.org/10.1002/(SICI)1097-4695(199904)39:1%3C14::AID-NEU2%3E3.0.CO;2-X

Article  Google Scholar 

Bentley, G. E., Spar, B. D., MacDougall-Shackleton, S. A., Hahn, T. P., & Ball, G. F. (2000). Photoperiodic regulation of the reproductive axis in male zebra finches, Taeniopygia guttata. General and Comparative Endocrinology, 117(3), 449–455. https://doi.org/10.1006/gcen.1999.7430

Article  Google Scholar 

Batra, T., Malik, I., & Kumar, V. (2019). Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches. Environmental Pollution, 254, 112916. https://doi.org/10.1016/j.envpol.2019.07.084

Article  Google Scholar 

Batra, T., Malik, I., Prabhat, A., Bhardwaj, S. K., & Kumar, V. (2020). Sleep in unnatural times: Illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proceedings of the Royal Society B, 287, 20192952. https://doi.org/10.1098/rspb.2019.2952

Article  PubMed Central  Google Scholar 

Ball, G. F., Riters, L. V., & Balthazart, J. (2002). Neuroendocrinology of song behavior and avian brain plasticity: Multiple sites of action of sex steroid hormones. Frontiers in Neuroendocrinology, 23(2), 137–178. https://doi.org/10.1006/frne.2002.023

Article  Google Scholar 

Bernard, D. J., Bentley, G. E., Balthazart, J., Turek, F. W., & Ball, G. F. (1999). Androgen receptor, estrogen receptor α, and estrogen receptor β show distinct patterns of expression in forebrain song control nuclei of European starlings. Endocrinology, 140(10), 4633–4643.

留言 (0)

沒有登入
gif