One-pot synthesis of alginate-antimicrobial peptide nanogel

WHO Geneva. (2017). Global action plan on antimicrobial resistance. World Health Organization, 1–28.

Santos, M. A. D. O., Vianna, M. F., Nishino, L. K., & Lazarini, P. R. (2015). Vestibular disorders in Bell’s palsy: A prospective study. Revue de Laryngologie Otologie Rhinologie (Bord), 136(1), 29–31.

Google Scholar 

Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00649-x

Article  CAS  PubMed  Google Scholar 

Szymczak, P., et al. (2023). Discovering highly potent antimicrobial peptides with deep generative model HydrAMP. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36994-z.

Li, C., et al. (2022). AMPlify: Attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics, 23(1), 1–15. https://doi.org/10.1186/s12864-022-08310-4

Article  MathSciNet  Google Scholar 

Marr, A. K., Gooderham, W. J., & Hancock, R. E. W. (2006). Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Current Opinion in Pharmacology, 6, 468–472. https://doi.org/10.1016/j.coph.2006.04.006

Article  CAS  PubMed  Google Scholar 

Wiman, E., Zattarin, E., Aili, D., Bengtsson, T., & Selegård, R. (2023). Development of novel broad – spectrum antimicrobial lipopeptides derived from plantaricin NC8 β. Science and Reports, 0123456789, 1–16. https://doi.org/10.1038/s41598-023-31185-8

Article  CAS  Google Scholar 

Klubthawee, N., Adisakwattana, P., Hanpithakpong, W., Somsri, S., & Aunpad, R. (2020). A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Science and Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-65688-5

Article  CAS  Google Scholar 

Bulet, P. (2004). Anti-microbial peptides: From invertebrates to vertebrates. Immunological Reviews, 198, 169–184.

Article  CAS  PubMed  Google Scholar 

Flórez-Castillo, J. M., Perullini, M., Jobbágy, M., & De Jesús Cano Calle, H. (2014). Enhancing antibacterial activity against Escherichia coli K-12 of peptide Ib-AMP4 with synthetic analogues. International Journal of Peptide Research and Therapeutic, 20(3). https://doi.org/10.1007/s10989-014-9391-2.

Flórez-Castillo, J. M., et al. (2020). Ib-M6 antimicrobial peptide: Antibacterial activity against clinical isolates of Escherichia coli and molecular docking. Antibiotics, 9(2). https://doi.org/10.3390/antibiotics9020079.

Zhang, Q. Y., et al. (2021). Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 1–25. https://doi.org/10.1186/s40779-021-00343-2

Article  CAS  Google Scholar 

Rowlett, V. W., et al. (2017). Impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. Journal of Bacteriology, 199(13). https://doi.org/10.1128/JB.00849-16.

Huang, Y. T., Kumar, S. R., Chan, H. C., Jhan, Z. H., Chen, D. W., & Lue, S. J. (2021). Efficacy of antimicrobial peptides (AMPs) against Escherichia coli and bacteria morphology change after AMP exposure. Journal of the Taiwan Institute of Chemical Engineers, 126, 307–312. https://doi.org/10.1016/j.jtice.2021.07.003

Article  CAS  Google Scholar 

El-Feky, G. S., El-Banna, S. T., El-Bahy, G. S., Abdelrazek, E. M., & Kamal, M. (2017). Alginate coated chitosan nanogel for the controlled topical delivery of Silver sulfadiazine. Carbohydrate Polymers, 177(January), 194–202. https://doi.org/10.1016/j.carbpol.2017.08.104

Article  CAS  PubMed  Google Scholar 

Rodrigues da Silva, G. H., et al. (2020). Injectable in situ forming nanogel: A hybrid Alginate-NLC formulation extends bupivacaine anesthetic effect”. Materials Science and Engineering C, 109, 110608. https://doi.org/10.1016/j.msec.2019.110608

Article  CAS  PubMed  Google Scholar 

Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H., & Kim, S. K. (2015). Alginate composites for bone tissue engineering: A review. International Journal of Biological Macromolecules, 72, 269–281. https://doi.org/10.1016/j.ijbiomac.2014.07.008

Article  CAS  PubMed  Google Scholar 

Sonego, J. M., Santagapita, P. R., Perullini, M., & Jobbágy, M. (2016). Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study. Dalton Transactions, 45(24). https://doi.org/10.1039/c6dt00321d.

Posbeyikian, A., et al. (2021). Evaluation of calcium alginate bead formation kinetics: An integrated analysis through light microscopy, rheology and microstructural SAXS. Carbohydrate Polymers, 269(February), 1–10. https://doi.org/10.1016/j.carbpol.2021.118293

Article  CAS  Google Scholar 

Ingar, K., & Skja, G. (2006). Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocolloids, 20, 170–175. https://doi.org/10.1016/j.foodhyd.2004.03.009

Article  CAS  Google Scholar 

Spedalieri, C., et al. (2015). Silica@proton-alginate microreactors: A versatile platform for cell encapsulation. Journal of Materials Chemistry B, 3(16), 2015. https://doi.org/10.1039/c4tb02020k

Article  Google Scholar 

Osorio-Alvarado, C. E., Ropero-Vega, J. L., Farfán-García, A. E., & Flórez-Castillo, J. M. (2022). Immobilization systems of antimicrobial peptide Ib−M1 in polymeric nanoparticles based on alginate and chitosan. Polymers (Basel), 14(15), 1–14. https://doi.org/10.3390/polym14153149

Article  CAS  Google Scholar 

Alkhatib, H., Mohamed, F., Akkawi, M. E., Alfatama, M., Chatterjee, B., & Doolaanea, A. A. (2020). Microencapsulation of black seed oil in alginate beads for stability and taste masking. Journal of Drug Delivery Science and Technology, 60(August), 102030. https://doi.org/10.1016/j.jddst.2020.102030.

Perullini, M., Ferro, Y., Durrieu, C., Jobbágy, M., & Bilmes, S. A. (2014). Sol-gel silica platforms for microalgae-based optical biosensors. Journal of Biotechnology, 179(1). https://doi.org/10.1016/j.jbiotec.2014.02.007.

Guarino, V., Altobelli, R., della Sala, F., Borzacchiello, A., & Ambrosio, L. (2018). Alginate processing routes to fabricate bioinspired platforms for tissue engineering and drug delivery. Springer Series in Biomaterials Science and Engineering, 11, 101–120. https://doi.org/10.1007/978-981-10-6910-9_4.

Zazzali, I., et al. (2022). Fine-tuning of functional and structural properties of Ca(II)-alginate beads containing artichoke waste extracts. Food Hydrocolloids for Health, 2(August). https://doi.org/10.1016/j.fhfh.2022.100097.

Paques, J. P., Van Der Linden, E., Van Rijn, C. J. M., & Sagis, L. M. C. (2014). Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science, 209, 163–171. https://doi.org/10.1016/j.cis.2014.03.009

Article  CAS  PubMed  Google Scholar 

Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638–1649. https://doi.org/10.1016/j.addr.2008.08.002

Article  CAS  PubMed  Google Scholar 

Flórez-Castillo, J. M., Ropero-Vega, J. L., Perullini, M., & Jobbágy, M. (2019). Biopolymeric pellets of polyvinyl alcohol and alginate for the encapsulation of Ib-M6 peptide and its antimicrobial activity against E. coli. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01872.

Ropero-Vega, J. L., Ardila-Rosas, N., Hernández, I. P., & Flórez-Castillo, J. M. (2020). Immobilization of Ib-M2 peptide on core@shell nanostructures based on SPION nanoparticles and their antibacterial activity against Escherichia coli O157:H7. Applied Surface Science, 515(March), 146045. https://doi.org/10.1016/j.apsusc.2020.146045.

Salvati, B., Santagapita, P., & Perullini, M. (2022). Exploring the conditions to generate alginate nanogels. Journal of Sol-Gel Science and Technology, 102, 142–150.

Aguirre Calvo, T. R., Santagapita, P. R., & Perullini, M. (2019). Functional and structural effects of hydrocolloids on Ca(II)-alginate beads containing bioactive compounds extracted from beetroot. LWT, 111, 520–526. https://doi.org/10.1016/j.lwt.2019.05.047

Article  CAS  Google Scholar 

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 2, 248–254. https://doi.org/10.1016/j.cj.2017.04.003

Article  Google Scholar 

Traffano-Schiffo, M. V., Castro-Giraldez, M., Fito, P. J., Perullini, M., & Santagapita, P. R. (2018). Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS. Carbohydrate Polymers, 179, 402–407. https://doi.org/10.1016/j.carbpol.2017.09.096

Article  CAS  PubMed  Google Scholar 

Eftinkt, M. R., & Ghiron, C. A. (1977). Exposure of tryptophanyl residues and protein dynamics. Biochemistry, 16(25), 5546–5551. https://doi.org/10.1021/bi00644a024

Article  Google Scholar 

Albani, J. R. (2014). Origin of tryptophan fluorescence lifetimes. Part 2: Fluorescence lifetimes origin of tryptophan in proteins. Journal of Fluorescence, 24(1), 105–117. https://doi.org/10.1007/s10895-013-1274-y

Article  CAS  PubMed  Google Scholar 

Valeur, B. (2002). Molecular fluorescence: Principles and applications. Wiley.

Gardiner, C. W. (1990). Handbook of stochastic methods for physics, chemistry, and the natural sciences (2nd ed.). Springer.

Google Scholar 

Eftink, M. R., & Ghiron, C. A. (1976). Fluorescence quenching of indole and model micelle systems. Journal of Physical Chemistry, 80(5), 486–493.

Article  CAS  Google Scholar 

Szabo, A. G., & Rayner, D. M. (1980). Fluorescence decay of tryptophan conformers in aqueous solution. Journal of the American Chemical Society, 102(2), 554–563. https://doi.org/10.1021/ja00522a020

Article  CAS  Google Scholar 

Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Springer.

Book  Google Scholar 

留言 (0)

沒有登入
gif