Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review

Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35. https://doi.org/10.1007/s00401-009-0619-8.

Article  PubMed  Google Scholar 

Yang T, Xing L, Yu W, Cai Y, Cui S, Chen G. Astrocytic reprogramming combined with rehabilitation strategy improves recovery from spinal cord injury. FASEB J. 2020;34:15504–15. https://doi.org/10.1096/fj.202001657RR.

Article  CAS  PubMed  Google Scholar 

Huang X, Wang C, Zhou X, Wang J, Xia K, Yang B, et al. Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury. CNS Neurosci Ther. 2020;26:940–51. https://doi.org/10.1111/cns.13390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spinal cord injury n.d. https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury. Accessed 14 Jul 2023.

Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7:628–43. https://doi.org/10.1038/nrn1955.

Article  CAS  PubMed  Google Scholar 

Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:3338. https://doi.org/10.1038/ncomms4338.

Article  ADS  CAS  PubMed  Google Scholar 

Youmans JR. Youmans & Winn neurological surgery. Eighth edition. Philadelphia, PA: Elsevier; 2023.

Google Scholar 

Chang J, Qian Z, Wang B, Cao J, Zhang S, Jiang F, et al. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun Signal. 2023;21:37. https://doi.org/10.1186/s12964-022-01036-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao L, Peng Y, Xu W, He P, Li T, Lu X, et al. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020;2020:1–16. https://doi.org/10.1155/2020/2853650.

Article  CAS  Google Scholar 

Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, et al. Recent advances in glioma cancer treatment: conventional and epigenetic realms. Vaccines. 2022;10:1448. https://doi.org/10.3390/vaccines10091448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Li H. Neuronal reprogramming in treating spinal cord injury. Neural Regen Res. 2022;17:1440–5. https://doi.org/10.4103/1673-5374.330590.

Article  CAS  PubMed  Google Scholar 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

Article  CAS  PubMed  Google Scholar 

Yang H, Liu CC, Wang CY, Zhang Q, An J, Zhang L, et al. Therapeutical strategies for spinal cord injury and a promising autologous astrocyte-based therapy using efficient reprogramming techniques. Mol Neurobiol. 2016;53:2826–42. https://doi.org/10.1007/s12035-015-9157-7.

Article  CAS  PubMed  Google Scholar 

Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 2010;8:e1000373. https://doi.org/10.1371/journal.pbio.1000373.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467:1–10. https://doi.org/10.1002/cne.10874.

Article  CAS  PubMed  Google Scholar 

Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999;23:257–71. https://doi.org/10.1016/s0896-6273(00)80778-3.

Article  CAS  PubMed  Google Scholar 

Zarei-Kheirabadi M, Hesaraki M, Kiani S, Baharvand H. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor. Stem Cell Res Ther. 2019;10:380. https://doi.org/10.1186/s13287-019-1448-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan Z, Qin S, Liu H, Huang X, Pu Y, He C, et al. Small molecules reprogram reactive astrocytes into neuronal cells in the injured adult spinal cord. J Adv Res. 2023:S2090123223001765. https://doi.org/10.1016/j.jare.2023.06.013.

Yang R-Y, Chai R, Pan J-Y, Bao J-Y, Xia P-H, Wang Y-K, et al. Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury. Neural Regen Res. 2023;18:396. https://doi.org/10.4103/1673-5374.346463.

Article  CAS  PubMed  Google Scholar 

Scheff SW, Saucier DA, Cain ME. A statistical method for analyzing rating scale data: the BBB locomotor score. J Neurotrauma. 2002;19:1251–60. https://doi.org/10.1089/08977150260338038.

Article  PubMed  Google Scholar 

Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 2006;23:635–59. https://doi.org/10.1089/neu.2006.23.635.

Article  PubMed  Google Scholar 

Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, et al. Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord. 2016;54:579–83. https://doi.org/10.1038/sc.2015.215.

Article  CAS  PubMed  Google Scholar 

Wang LL, Su Z, Tai W, Zou Y, Xu XM, Zhang CL. The p53 pathway controls SOX2-mediated reprogramming in the adult mouse spinal cord. Cell Rep. 2016;17:891–903. https://doi.org/10.1016/j.celrep.2016.09.038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puls B, Ding Y, Zhang F, Pan M, Lei Z, Pei Z, et al. Regeneration of functional neurons after spinal cord injury via in situ NeuroD1-mediated astrocyte-to-neuron conversion. Front Cell Dev Biol. 2020;8:591883. https://doi.org/10.3389/fcell.2020.591883.

Article  PubMed  PubMed Central  Google Scholar 

Tan Z, Qin S, Yuan Y, Hu X, Huang X, Liu H, et al. NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury. Theranostics. 2022;12:4548–63. https://doi.org/10.7150/thno.71378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Zhang B, Xu S, Lin R, Wang W. Lentivirus carrying the NeuroD1 gene promotes the conversion from glial cells into neurons in a spinal cord injury model. Brain Res Bull. 2017;135:143–8. https://doi.org/10.1016/j.brainresbull.2017.10.001.

Article  CAS  PubMed  Google Scholar 

Kim J, Son Y, Hwang K, Park H, Kim Y, Kim M, et al. Synergistic enhancement of adeno‐associated virus‐mediated in vivo direct neuronal reprogramming by spatially aligned fibrous matrices in spinal cord injury models. Adv Therapeutics. 2023;6:2300040. https://doi.org/10.1002/adtp.202300040.

Article  CAS  Google Scholar 

Feng GD, He BR, Lu F, Liu LH, Zhang L, Chen B, et al. Fibroblast growth factor 4 is required but not sufficient for the astrocyte dedifferentiation. Mol Neurobiol. 2014;50:997–1012. https://doi.org/10.1007/s12035-014-8649-1.

Article  CAS  PubMed  Google Scholar 

Shen K, Wu D, Sun B, Zhu Y, Wang H, Zou W, et al. Ginsenoside Rg1 promotes astrocyte‐to‐neuron transdifferentiation in rat and its possible mechanism. CNS Neurosci Ther. 2023;29:256–69. https://doi.org/10.1111/cns.14000.

Article  CAS  PubMed  Google Scholar 

All AH, Al-Nashash H. Comparative analysis of functional assessment for contusion and transection models of spinal cord injury. Spinal Cord. 2021;59:1206–9. https://doi.org/10.1038/s41393-021-00698-2.

Article  PubMed  Google Scholar 

Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell. 2014;14:188–202. https://doi.org/10.1016/j.stem.2013.12.001.

Article  CAS  PubMed  Google Scholar 

Roybon L, Mastracci TL, Ribeiro D, Sussel L, Brundin P, Li J-Y. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. Cereb Cortex. 2010;20:1234–44. https://doi.org/10.1093/cercor/bhp187.

Article  PubMed  Google Scholar 

Li T, Zhao X, Duan J, Cui S, Zhu K, Wan Y, et al. Targeted inhibition of STAT3 in neural stem cells promotes neuronal differentiation and functional recovery in rats with spinal cord injury. Exp Ther Med. 2021;22:711. https://doi.org/10.3892/etm.2021.10143.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu L, Tang Y-Y, Ben X-L, Cheng M-H, Guo W-X, Liu Y, et al. Ginsenoside Rg1-induced activation of astrocytes promotes functional recovery via the PI3K/Akt signaling pathway following spinal cord injury. Life Sci. 2020;252:117642. https://doi.org/10.1016/j.lfs.2020.117642.

留言 (0)

沒有登入
gif