Innovating dialysis through computational modelling of hollow-fibre haemodialysers

Ronco, C. & Clark, W. R. Haemodialysis membranes. Nat. Rev. Nephrol. 14, 394–410 (2018).

Article  CAS  Google Scholar 

Ramada, D. L. et al. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat. Rev. Nephrol. 19, 481–490 (2023).

Article  Google Scholar 

Cancilla, N. et al. A porous media CFD model for the simulation of hemodialysis in hollow fiber membrane modules. J. Membr. Sci. 646, 120219 (2022).

Article  CAS  Google Scholar 

Abaci, H. E. & Altinkaya, S. A. Modeling of hemodialysis operation. Ann. Biomed. Eng. 38, 3347–3362 (2010).

Article  Google Scholar 

Mohajerani, F., Clark, W. R., Ronco, C. & Narsimhan, V. Mass transport in high-flux hemodialysis: application of engineering principles to clinical prescription. Clin. J. Am. Soc. Nephrol. 17, 749–756 (2022).

Article  CAS  Google Scholar 

King, J. et al. Modeling indoxyl sulfate transport in a bioartificial kidney: two-step binding kinetics or lumped parameters model for uremic toxin clearance? Comput. Biol. Med. 138, 104912 (2021).

Article  CAS  Google Scholar 

Refoyo, R., Skouras, E. D., Chevtchik, N. V., Stamatialis, D. & Burganos, V. N. Transport and reaction phenomena in multilayer membranes functioning as bioartificial kidney devices. J. Membr. Sci. 565, 61–71 (2018).

Article  CAS  Google Scholar 

Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

Article  Google Scholar 

Alber, M. et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2, 115 (2019).

Article  Google Scholar 

Himmelfarb, J., Vanholder, R., Mehrotra, R. & Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 16, 573–585 (2020).

Article  Google Scholar 

留言 (0)

沒有登入
gif