Experimental periprosthetic fractures with collarless polished tapered cemented stems

Khanuja HS, Mekkawy KL, MacMahon A, McDaniel CM, Allen DA, Moskal JT (2022) Revisiting cemented femoral fixation in hip arthroplasty. J Bone Joint Surg Am 104:1024–1033. https://doi.org/10.2106/JBJS.21.00853

Article  PubMed  Google Scholar 

Abdel MP, Houdek MT, Watts CD, Lewallen DG, Berry DJ (2016) Epidemiology of periprosthetic femoral fractures in 5417 revision total hip arthroplasties: a 40-year experience. Bone Joint J 98-B:468–474. https://doi.org/10.1302/0301-620X.98B4.37203

Article  CAS  PubMed  Google Scholar 

Thien TM, Chatziagorou G, Garellick G, Furnes O, Havelin L, Mäkelä K et al (2014) Periprosthetic femoral fracture within two years after total hip replacement: analysis of 437,629 operations in the Nordic arthroplasty register association database. J Bone Joint Surg Am 96:e167. https://doi.org/10.2106/JBJS.M.00643

Article  PubMed  Google Scholar 

Springer BD, Etkin CD, Shores PB, Gioe TJ, Lewallen DG, Bozic KJ (2019) Perioperative periprosthetic femur fractures are strongly correlated with fixation method: an analysis from the american joint replacement registry. J Arthroplasty 34:S352–S354. https://doi.org/10.1016/j.arth.2019.02.004

Article  PubMed  Google Scholar 

Palan J, Smith MC, Gregg P, Mellon S, Kulkarni A (2016) The influence of cemented femoral stem choice on the incidence of revision for periprosthetic fracture after primary total hip arthroplasty: an analysis of national joint registry data. Bone Joint J 98-B:1347–1354. https://doi.org/10.1302/0301-620X.98B10.36534

Article  CAS  PubMed  Google Scholar 

Mukka S, Mellner C, Knutsson B, Sayed-Noor A, Sköldenberg O (2016) Substantially higher prevalence of postoperative peri-prosthetic fractures in octogenarians with hip fractures operated with a cemented, polished tapered stem rather than an anatomic stem. Acta Orthop 87:257–261. https://doi.org/10.3109/17453674.2016.1162898

Article  PubMed  PubMed Central  Google Scholar 

Carli AV, Negus JJ, Haddad FS (2017) Periprosthetic femoral fractures and trying to avoid them: what is the contribution of femoral component design to the increased risk of periprosthetic femoral fracture? Bone Joint J 99-B:50–59. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0220.R1

Article  CAS  PubMed  Google Scholar 

Scott T, Salvatore A, Woo P, Lee YY, Salvati EA, Della Valle AG (2018) Polished, collarless, tapered, cemented stems for primary hip arthroplasty may exhibit high rate of periprosthetic fracture at short-term follow-up. J Arthroplasty 33:1120–1125. https://doi.org/10.1016/j.arth.2017.11.003

Article  PubMed  Google Scholar 

Chatziagorou G, Lindahl H, Kärrholm J (2019) The design of the cemented stem influences the risk of Vancouver type B fractures, but not of type C: an analysis of 82,837 Lubinus SPII and Exeter Polished stems. Acta Orthop 90:135–142. https://doi.org/10.1080/17453674.2019.1574387

Article  PubMed  PubMed Central  Google Scholar 

Shen G (1998) Femoral stem fixation. An engineering interpretation of the long-term outcome of Charnley and Exeter stems. J Bone Joint Surg Br 80-B:754–756. https://doi.org/10.1302/0301-620x.80b5.8621

Article  Google Scholar 

Ling RS, Charity J, Lee AJ, Whitehouse SL, Timperley AJ, Gie GA (2009) The long-term results of the original Exeter polished cemented femoral component: a follow-up report. J Arthroplasty 24:511–517. https://doi.org/10.1016/j.arth.2009.02.002

Article  PubMed  Google Scholar 

Oe K, Iida H, Hirata M, Kawamura H, Ueda N, Nakamura T et al (2023) An atypical periprosthetic fracture in collarless, polished, tapered, cemented stems of total hip arthroplasty: a report of five SC-stem cases and literature review. J Orthop Sci 28:1422–1429. https://doi.org/10.1016/j.jos.2021.04.003

Article  PubMed  Google Scholar 

Hirata M, Oe K, Kaneuji A, Uozu R, Shintani K, Saito T (2021) Relationship between the surface roughness of material and bone cement: an increased “polished” stem may result in the excessive taper-slip. Materials (Basel) 14:3702. https://doi.org/10.3390/ma14133702

Article  ADS  CAS  PubMed  Google Scholar 

Kaneuji A, Chen M, Takahashi E, Takano N, Fukui M, Soma D et al (2023) Collarless polished tapered stems of identical shape provide differing outcomes for stainless steel and cobalt chrome: a biomechanical study. J Funct Biomater 14:262. https://doi.org/10.3390/jfb14050262

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDougall CJ, Yu J, Calligeros K, Crawford R, Howie CR (2016) A valuable technique for femoral stem revision in total hip replacement: the in-cement revision—a case series and technical note. J Orthop 13:294–297. https://doi.org/10.1016/j.jor.2016.06.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon WJ, Mood AM (1948) A method for obtaining and analyzing sensitivity data. J Am Stat Assoc 43:109–126

Article  Google Scholar 

Verdonschot N (2005) Implant choice: stem design philosophies. In: Breusch S, Malchau H (eds) The well-cemented total hip arthroplasty. Springer, Berlin, pp 171–172

Google Scholar 

Tsuda R (2016) Differences in mechanical behavior between Cobalt-chrome alloy and stainless-steel alloy in polished tapered femoral stems fixed with bone cement. J Kanazawa Med Univ 41:1–9 ([In Japanese])

CAS  Google Scholar 

Takegami Y, Seki T, Osawa Y, Imagama S (2022) Comparison of periprosthetic femoral fracture torque and strain pattern of three types of femoral components in experimental model. Bone Joint Res 11:270–277. https://doi.org/10.1302/2046-3758.115.BJR-2021-0375.R2

Article  PubMed  PubMed Central  Google Scholar 

Scanelli JA, Reiser GR, Sloboda JF, Moskal JT (2019) Cemented femoral component use in hip arthroplasty. J Am Acad Orthop Surg 27:119–127. https://doi.org/10.5435/JAAOS-D-17-00245

Article  PubMed  Google Scholar 

Hinrichs F, Kuhl M, Boudriot U, Griss P (2003) A comparative clinical outcome evaluation of smooth (10–13 year results) versus rough surface finish (5–8 year results) in an otherwise identically designed cemented titanium alloy stem. Arch Orthop Trauma Surg 123:268–272. https://doi.org/10.1007/s00402-003-0515-y

Article  CAS  PubMed  Google Scholar 

Akiyama H, Kawanabe K, Yamamoto K, So K, Kuroda Y, Nakamura T (2011) Clinical outcomes of cemented double-tapered titanium femoral stems: a minimum 5-year follow-up. J Orthop Sci 16:689–697. https://doi.org/10.1007/s00776-011-0154-z

Article  CAS  PubMed  Google Scholar 

Akiyama H, Yamamoto K, Kaneuji A, Matsumoto T, Nakamura T (2013) In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish. J Orthop Sci 18:29–37. https://doi.org/10.1007/s00776-012-0298-5

Article  PubMed  Google Scholar 

Docter S, Philpott HT, Godkin L, Bryant D, Somerville L, Jennings M et al (2020) Comparison of intra and post-operative complication rates among surgical approaches in total hip arthroplasty: a systematic review and meta-analysis. J Orthop 20:310–325. https://doi.org/10.1016/j.jor.2020.05.008

Article  PubMed  PubMed Central  Google Scholar 

Committee E-9 on the Fatigue (1963) A guide for fatigue testing and the statistical analysis of fatigue data, vol. 91-A. American Society for Testing and Materials, pp 8–16

Yoshimoto I (1960) Fatigue test by staircase method with small samples. Jpn Soc Mech Eng 26:918–925 ([In Japanese])

Google Scholar 

Mukherjee K, Ghorai TK, Kumar A (2023) High grade femoral stem subsidence in uncemented hip hemiarthroplasty—a radiographic analysis and an early prediction while treating femoral neck fractures. Int Orthop 47:1591–1599. https://doi.org/10.1007/s00264-023-05791-0

Article  PubMed  Google Scholar 

Kristóf J, Gupta D, Szabó L, Bucsi L, Zahár Á (2023) Outcomes of Exeter cemented total hip arthroplasty in a county hospital: survivorship of eight hundred and ninety four hips with a minimum ten-year follow up. Int Orthop. Online ahead of print. https://doi.org/10.1007/s00264-023-06026-y

留言 (0)

沒有登入
gif