Transcription factors in chimeric antigen receptor T-cell development

Lim WA, June CH. The Principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–40. https://doi.org/10.1016/j.cell.2017.01.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feins S, Kong WM, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94:S3–9. https://doi.org/10.1002/ajh.25418.

Article  CAS  PubMed  Google Scholar 

Penack O, Koenecke C. Complications after CD19+CAR T-cell therapy. Cancers. 2020. https://doi.org/10.3390/cancers12113445.

Article  PubMed  PubMed Central  Google Scholar 

Tang TCY, Xu N, Nordon R, Haber M, Micklethwaite K, Dolnikov A. Donor T cells for CAR T cell therapy. Biomark Res. 2022. https://doi.org/10.1186/s40364-022-00359-3.

Article  PubMed  PubMed Central  Google Scholar 

Fuca G, Reppel L, Landoni E, Savoldo B, Dotti G. Enhancing chimeric antigen receptor T-cell efficacy in solid tumors. Clin Cancer Res. 2020;26(11):2444–51. https://doi.org/10.1158/1078-0432.Ccr-19-1835.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schubert ML, Schmitt M, Wang L, Ramos CA, Jordan K, Muller-Tidow C, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol. 2021;32(1):34–48. https://doi.org/10.1016/j.annonc.2020.10.478.

Article  CAS  PubMed  Google Scholar 

Papavassiliou KA, Papavassiliou AG. Transcription factor drug targets. J Cell Biochem. 2016;117(12):2693–6. https://doi.org/10.1002/jcb.25605.

Article  CAS  PubMed  Google Scholar 

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin YM, Albu M, et al. The human transcription factors. Cell. 2018;172(4):650–65. https://doi.org/10.1016/j.cell.2018.01.029.

Article  CAS  PubMed  Google Scholar 

Zheng WT, Wei J, Zebley CC, Jones LL, Dhungana Y, Wang YD, et al. Regnase-1 suppresses TCF-1(+) precursor exhausted T-cell formation to limit CAR-T-cell responses against ALL. Blood. 2021;138(2):122–35. https://doi.org/10.1182/blood.2020009309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Lopez-Moyado IF, Seo H, Lio CWJ, Hempleman LJ, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019. https://doi.org/10.1038/s41586-019-0985-x.

Article  PubMed  PubMed Central  Google Scholar 

Xie Z, Hu SH, Blackshaw S, Zhu H, Qian J. hPDI: a database of experimental human protein-DNA interactions. Bioinformatics. 2010;26(2):287–9. https://doi.org/10.1093/bioinformatics/btp631.

Article  CAS  PubMed  Google Scholar 

Dai X, Rothman-Denes LB. DNA structure and transcription. Curr Opin Microbiol. 1999;2(2):126–30. https://doi.org/10.1016/s1369-5274(99)80022-8.

Article  CAS  PubMed  Google Scholar 

Zambalde EP, Mathias C, Rodrigues AC, Ribeiro E, Gradia DF, Calin GA, et al. Highlighting transcribed ultraconserved regions in human diseases. Wiley Interdiscip Rev-Rna. 2020. https://doi.org/10.1002/wrna.1567.

Article  Google Scholar 

Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription factors in cancer development and therapy. Cancers. 2020. https://doi.org/10.3390/cancers12082296.

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Xu L, Lin RYT, Muschen M, Koeffler HP. Core transcriptional regulatory circuitries in cancer. Oncogene. 2020;39(43):6633–46. https://doi.org/10.1038/s41388-020-01459-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francois M, Donovan P, Fontaine F. Modulating transcription factor activity: interfering with protein-protein interaction networks. Semin Cell Dev Biol. 2020;99:12–9. https://doi.org/10.1016/j.semedb.2018.07.019.

Article  CAS  PubMed  Google Scholar 

Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol. 2021;21(3):162–76. https://doi.org/10.1038/s41577-020-00426-6.

Article  CAS  PubMed  Google Scholar 

Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. https://doi.org/10.1038/nm.3838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma S, Li XC, Wang XY, Cheng L, Li Z, Zhang CZ, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60. https://doi.org/10.7150/ijbs.34213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Best JA, Blair DA, Knell J, Yang E, Mayya V, Doedens A, et al. Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nat Immunol. 2013;14(4):404–12. https://doi.org/10.1038/ni.2536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu XD, Wang Y, Lu HP, Li J, Yan XW, Xiao ML, et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature. 2019. https://doi.org/10.1038/s41586-019-0979-8.

Article  PubMed  PubMed Central  Google Scholar 

Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell. 2021. https://doi.org/10.1016/j.cell.2021.11.016.

Article  PubMed  PubMed Central  Google Scholar 

Evans CM, Jenner RG. Transcription factor interplay in T helper cell differentiation. Brief Funct Genom. 2013;12(6):499–511. https://doi.org/10.1093/bfgp/elt025.

Article  CAS  Google Scholar 

Ding ZC, Shi HD, Aboelella NS, Fesenkova K, Park EJ, Liu ZQ, et al. Persistent STAT5 activation reprograms the epigenetic landscape in CD4(+) T cells to drive polyfunctionality and antitumor immunity. Sci Immunol. 2020. https://doi.org/10.1126/sciimmunol.aba5962.

Article  PubMed  PubMed Central  Google Scholar 

Tolomeo M, Meli M, Grimaudo S. STAT5 and STAT5 inhibitors in hematological malignancies. Anticancer Agents Med Chem. 2019;19(17):2036–46. https://doi.org/10.2174/1871520619666190906160848.

Article  CAS  PubMed  Google Scholar 

Shin HY, Hennighausen L, Yoo KH. STAT5-driven enhancers tightly control temporal expression of mammary-specific genes. J Mammary Gland Biol Neoplasia. 2019;24(1):61–71. https://doi.org/10.1007/s10911-018-9418-y.

Article  PubMed  Google Scholar 

Macian F. NFAT proteins: Key regulators of T-cell development and function. Nat Rev Immunol. 2005;5(6):472–84. https://doi.org/10.1038/nri1632.

Article  CAS  PubMed  Google Scholar 

Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47. https://doi.org/10.1146/annurev.immunol.15.1.707.

Article  CAS  PubMed  Google Scholar 

Cai SY, Yu D, Soroka CJ, Wang J, Boyer JL. Hepatic NFAT signaling regulates the expression of inflammatory cytokines in cholestasis. J Hepatol. 2021;74(3):550–9. https://doi.org/10.1016/j.jhep.2020.09.035.

Article  CAS  PubMed  Google Scholar 

Upadhyay R, Boiarsky JA, Pantsulaia G, Svensson-Arvelund J, Lin MJ, Wroblewska A, et al. A Critical role for fas-mediated off-target tumor killing in T-cell immunotherapy. Cancer Discov. 2021;11(3):599–613. https://doi.org/10.1158/2159-8290.Cd-20-0756.

Article  CAS  PubMed  Google Scholar 

Seo H, Chen J, Gonzalez-Avalos E, Samaniego-Castruita D, Das A, Wang YQH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8(+) T cell exhaustion. Proc Natl Acad Sci USA. 2019;116(25):12410–5. https://doi.org/10.1073/pnas.1905675116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019. https://doi.org/10.1038/s41586-019-1805-z.

Article  PubMed  PubMed Central  Google Scholar 

Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001;20(19):2476–89. https://doi.org/10.1038/sj.onc.1204386.

Article  CAS  PubMed  Google Scholar 

Seo H, Gonzalez-Avalos E, Zhang WD, Ramchandani P, Yang C, Lio

留言 (0)

沒有登入
gif