Docosahexaenoic acid (DHA) impairs hypoxia-induced cellular and exosomal overexpression of immune-checkpoints and immunomodulatory molecules in different subtypes of breast cancer cells

Waks AG, Winer EP. Breast Cancer Treatment: a review. JAMA. 2019;321(3):288–300.

Article  CAS  Google Scholar 

Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506–19.

Article  CAS  Google Scholar 

Metzger-Filho O, Sun Z, Viale G, Price KN, Crivellari D, Snyder RD, et al. Patterns of recurrence and outcome according to breast cancer subtypes in lymph node–negative disease: results from international breast Cancer study group trials VIII and IX. J Clin Oncol. 2013;31(25):3083.

Article  CAS  Google Scholar 

Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24(2):157.

Article  Google Scholar 

Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African–American and caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and end results database. Cancer: Interdisciplinary Int J Am Cancer Soc. 2007;110(4):876–84.

Article  Google Scholar 

Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.

Article  Google Scholar 

Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–34.

Article  Google Scholar 

Newell M, Brun M, Field CJ. Treatment with DHA modifies the response of MDA-MB-231 breast Cancer cells and tumors from nu/nu mice to Doxorubicin through apoptosis and cell cycle arrest. J Nutr. 2019.

Javadian M, Shekari N, Soltani-Zangbar MS, Mohammadi A, Mansoori B, Maralbashi S, et al. Docosahexaenoic acid suppresses migration of triple‐negative breast cancer cell through targeting metastasis‐related genes and microRNA under normoxic and hypoxic conditions. J Cell Biochem. 2020;121(3):2416–27.

Article  CAS  Google Scholar 

Han L, Lei H, Tian Z, Wang X, Cheng D, Wang C. The immunomodulatory activity and mechanism of docosahexenoic acid (DHA) on immunosuppressive mice models. Food & function; 2018.

Field CJ, Schley PD. Evidence for potential mechanisms for the effect of conjugated linoleic acid on tumor metabolism and immune function: lessons from n – 3 fatty acids. Am J Clin Nutr. 2004;79(6):1190S–8S.

Article  CAS  Google Scholar 

Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 2023;22(1):44.

Article  CAS  Google Scholar 

Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer. 2011;11(11):805.

Article  CAS  Google Scholar 

Rouas-Freiss N, LeMaoult J, Verine J, Tronik-Le Roux D, Culine S, Hennequin C, et al. Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: focus on HLA-G/ILT2/ILT4. OncoImmunology. 2017;6(9):e1342023.

Article  Google Scholar 

Wolchok JD, Chan TA, Cancer. Antitumour immunity gets a boost. Nature. 2014;515(7528):496.

Article  CAS  Google Scholar 

Yang R, Elsaadi S, Misund K, Abdollahi P, Vandsemb EN, Moen SH et al. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J Immunother Cancer. 2020;8(1).

Feng R, Zhao H, Xu J, Shen C. CD47: the next checkpoint target for cancer immunotherapy. Crit Rev Oncol/Hematol. 2020;152:103014.

Article  Google Scholar 

Kim NI, Park MH, Kweon SS, Lee JS. B7-H3 and B7-H4 expression in breast Cancer and their association with Clinicopathological Variables and T cell infiltration. Pathobiology: J Immunopathol Mol Cell Biology. 2020;87(3):179–92.

Article  CAS  Google Scholar 

Rong L, Li R, Li S, Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol Lett. 2016;11(1):500–4.

Article  CAS  Google Scholar 

Ning Y, Shen K, Wu Q, Sun X, Bai Y, Xie Y, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 2018;199:36–43.

Article  CAS  Google Scholar 

Alfonsi R, Grassi L, Signore M, Bonci D. The double Face of Exosome-carried MicroRNAs in Cancer Immunomodulation. Int J Mol Sci. 2018;19(4).

Naseri Z, Oskuee RK, Jaafari MR, Moghadam MF. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomed. 2018;13:7727.

Article  CAS  Google Scholar 

Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, et al. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019;234(10):16885–903.

Article  CAS  Google Scholar 

Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T et al. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019.

Javadian M, Gharibi T, Shekari N, Abdollahpour-Alitappeh M, Mohammadi A, Hossieni A, et al. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol. 2019;234(5):5399–412.

Article  CAS  Google Scholar 

Lasser C, Eldh M, Lotvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012;59:e3037.

Google Scholar 

Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer. 2015;14:133.

Article  Google Scholar 

Aslan C, Maralbashi S, Kahroba H, Asadi M, Soltani-Zangbar MS, Javadian M, et al. Docosahexaenoic acid (DHA) inhibits pro-angiogenic effects of breast cancer cells via down-regulating cellular and exosomal expression of angiogenic genes and microRNAs. Life Sci. 2020;258:118094.

Article  CAS  Google Scholar 

Geng L, Zhou W, Liu B, Wang X, Chen B. DHA induces apoptosis of human malignant breast cancer tissues by the TLR-4/PPAR-alpha pathways. Oncol Lett. 2018;15(3):2967–77.

Google Scholar 

Huang LH, Chung HY, Su HM. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line. BMC Cancer. 2017;17(1):890.

Article  Google Scholar 

Han L, Lei H, Tian Z, Wang X, Cheng D, Wang C. The immunomodulatory activity and mechanism of docosahexenoic acid (DHA) on immunosuppressive mice models. Food Funct. 2018;9(6):3254–63.

Article  CAS  Google Scholar 

Thom VT, Wendel M, Deussen A. Regulation of ecto-5 -nucleotidase by docosahexaenoic acid in human endothelial cells. Cell Physiol Biochem. 2013;32(2):355–66.

Article  CAS  Google Scholar 

Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. Journal of immunology (Baltimore, Md: 1950). 2011;187(2):676– 83.

Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I, et al. Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Annals Oncol: Official J Eur Soc Med Oncol. 2018;29(4):1056–62.

Article  CAS  Google Scholar 

Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276(1):121–44.

Article  CAS  Google Scholar 

Theodoraki MN, Hoffmann TK, Jackson EK, Whiteside TL. Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence. Clin Exp Immunol. 2018;194(1):67–78.

Article  CAS  Google Scholar 

Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 2015;112(45):E6215–23.

Article  CAS  Google Scholar 

Massaro M, Martinelli R, Gatta V, Scoditti E, Pellegrino M, Carluccio MA, et al. Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS ONE. 2015;10(6):e0129652.

Article  Google Scholar 

Liu X, Kwon H, Li Z, Fu Y-x. Is CD47 an innate immune checkpoint for tumor evasion? J Hematol Oncol. 2017;10(1):12.

Article  Google Scholar 

Talamonti E, Pauter AM, Asadi A, Fischer AW, Chiurchiu V, Jacobsson A. Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: implications for DHA supplementation during inflammation. Cell Mol life Sci: CMLS. 2017;74(15):2815–26.

Article  CAS  Google Scholar 

Li Y, Bai W, Zhang L. The overexpression of CD80 and ISG15 are Associated with the progression and metastasis of breast Cancer by a Meta-Analysis Integrating three microarray datasets. Pathology oncology research: POR; 2018.

Google Scholar 

Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, et al. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci. 2020;247:117437.

Article  CAS  Google Scholar 

Fadaee M, Abbasi H, Maralbashi S, Baradaran B, Shanehbandi D, Dinevari MF, et al. Docosahexaenoic acid may inhibit immune evasion of colorectal cancer cells through targeting immune checkpoint and immunomodulator genes and their controlling microRNAs. Biofactors. 2022;48(5):1137–44.

Article  CAS  Google Scholar 

Zhang H, Chen H, Yin S, Fan L, Jin C, Zhao C, et al. Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradation. J Nutr Biochem. 2023;112:109186.

Article  CAS  Google Scholar 

Ghaffari-Makhmalbaf P, Sayyad M, Pakravan K, Razmara E, Bitaraf A, Bakhshinejad B, et al. Docosahexaenoic acid reverses the promoting effects of breast tumor cell-derived exosomes on endothelial cell migration and angiogenesis. Life Sci. 2021;264:118719.

Article  CAS  Google Scholar 

Shekari N, Javadian M, Ghasemi M, Baradaran B, Darabi M, Kazemi T. Synergistic beneficial effect of Docosahexaenoic Acid (DHA) and Docetaxel on the expression level of Matrix Metalloproteinase-2 (MMP-2) and MicroRNA-106b in gastric Cancer. J Gastrointest cancer. 2020;51(1):70–5.

Article  CAS  Google Scholar 

Ren J, Li W, Pan G, Huang F, Yang J, Zhang H et al. Mir-142-3p modulates Cell Invasion and Migration via PKM2-Mediated aerobic glycolysis in Colorectal Cancer. Analytical cellular pathology (Amsterdam). 2021;2021:9927720.

Zhao H, Lai X, Zhang W, Zhu H, Zhang S, Wu W, et al. MiR-30a-5p frequently downregulated in prostate cancer inhibits cell proliferation via targeting PCLAF. Artif Cells Nanomed Biotechnol. 2019;47(1):278–89.

Article  CAS  Google Scholar 

Shen Y, Yang Y, Li Y. MiR-133a acts as a tumor suppressor in lung cancer progression by regulating the LASP1 and TGF-β/Smad3 signaling pathway. Thorac cancer. 2020;11(12):3473–81.

Article  CAS

留言 (0)

沒有登入
gif