The Efficacy of Manganese Oxide (Mn2O3) Nanoparticles and Tellurium Oxide (TeO2) Nanorods Against Leishmania Lesions in Female Albino Rats

1.    Nweze JA, Mbaoji FN, Li Y-M, Yang L-Y, Huang S-S, Chigor VN, et al. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles. Infectious Diseases of Poverty. 2021;10(1).
2.    Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomedicine & Pharmacotherapy. 2021;139:111671.
3.    El-Dirany R, Shahrour H, Dirany Z, Abdel-Sater F, Gonzalez-Gaitano G, Brandenburg K, et al. Activity of Anti-Microbial Peptides (AMPs) against Leishmania and Other Parasites: An Overview. Biomolecules. 2021;11(7):984.
4.    van Griensven J, Diro E. Visceral Leishmaniasis. Infect Dis Clin North Am. 2019;33(1):79-99.
5.    Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports. 2021;8(2):121-132.
6.    Cowan R, Varadarajan S, Wei A, Salim T, DallaPiazza M. Microbial perils of the tropics: A case of cutaneous leishmaniasis in an immigrant from South America. IDCases. 2023;31:e01669.
7.    Tadele M, Abay SM, Makonnen E, Hailu A.;Leishmania donovani; Growth Inhibitors from Pathogen Box Compounds of Medicine for Malaria Venture. Drug Des Devel Ther. 2020;Volume 14:1307-1317.
8.    Kumar GA, Karmakar J, Mandal C, Chattopadhyay A. Leishmania donovani Internalizes into Host Cells via Caveolin-mediated Endocytosis. Sci Rep. 2019;9(1).
9.    Sánchez-García L, Pérez-Torres A, Gudiño-Zayas ME, Zamora-Chimal J, Meneses C, Kamhawi S, et al. Leishmania major-Infected Phlebotomus duboscqi Sand Fly Bites Enhance Mast Cell Degranulation. Pathogens. 2023;12(2):207.
10.    Giraud E, Svobodová M, Müller I, Volf P, Rogers ME. Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica cutaneous leishmaniasis in mice. Parasitology. 2019;146(14):1796-1802.
11.    Bongiorno G, Di Muccio T, Bianchi R, Gramiccia M, Gradoni L. Laboratory transmission of an Asian strain of Leishmania tropica by the bite of the southern European sand fly Phlebotomus perniciosus. Int J Parasitol. 2019;49(6):417-421.
12.    Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens. 2023;12(2):246.
13.    de Vries HJC, Schallig HD. Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. Am J Clin Dermatol. 2022;23(6):823-840.
14.    Desjeux P. The increase in risk factors for leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2001;95(3):239-243.
15.    Bi K, Chen Y, Zhao S, Kuang Y, John Wu C-H. Current Visceral Leishmaniasis Research: A Research Review to Inspire Future Study. BioMed Research International. 2018;2018:1-13.
16.    Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS One. 2012;7(5):e35671.
17.    Sunyoto T, Verdonck K, el Safi S, Potet J, Picado A, Boelaert M. Uncharted territory of the epidemiological burden of cutaneous leishmaniasis in sub-Saharan Africa—A systematic review. PLoS Negl Trop Dis. 2018;12(10):e0006914.
18.    Jones CM, Welburn SC. Leishmaniasis Beyond East Africa. Frontiers in Veterinary Science. 2021;8.
19.    Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother. 2004;10(6):307-315.
20.    de Menezes JPB, Guedes CES, Petersen ALdOA, Fraga DBM, Veras PST. Advances in Development of New Treatment for Leishmaniasis. BioMed Research International. 2015;2015:1-11.
21.    Iranpour S, Hosseinzadeh A, Alipour A. Efficacy of miltefosine compared with glucantime for the treatment of cutaneous leishmaniasis: a systematic review and meta-analysis. Epidemiology and Health. 2019;41:e2019011.
22.    H. Ismail H, Abdulla Hasoon S, J. Saheb E. The anti- Leishmaniasis activity of green synthesis silver oxide nanoparticles. Africa Health Research Organization. 2019;22(04):28-38.
23.    Al-Kalifawi EJ, Al-Azzawi YJ, Feaza MA. Antibacterial, antivirulence and antifungal activity of silver nanoparticles synthesized using alkhal mother shae. Journal of Physics: Conference Series. 2021;1879(2):022054.
24.    Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiology and Control. 2020;10:e00156.
25.    de Santana NS, de Oliveira de Siqueira LB, do Nascimento T, Santos-Oliveira R, dos Santos Matos AP, Ricci-Júnior E. Nanoparticles for the treatment of visceral leishmaniasis: review. J Nanopart Res. 2023;25(2).
26.    Awad MA, Al Olayan EM, Siddiqui MI, Merghani NM, Alsaif SSA-l, Aloufi AS. Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment. Biomedicine & Pharmacotherapy. 2021;137:111294.
27.    Rashad S, Haggran a-h, Aboul-Ela E, Shaalan A, Abdoon a. Cytotoxic and genotoxic effects of 50nm Gold Nanorods on mouse splenocytes and human cell lines. Egyptian Journal of Chemistry. 2022;0(0):0-0.
28.    Zhang L, Pornpattananangkul D, Hu CM, Huang CM. Development of Nanoparticles for Antimicrobial Drug Delivery. Curr Med Chem. 2010;17(6):585-594.
29.    Panthi G, Yousef A, Barakat NAM, Abdelrazek Khalil K, Akhter S, Ri Choi Y, et al. Mn2O3/TiO2 nanofibers with broad-spectrum antibiotics effect and photocatalytic activity for preliminary stage of water desalination. Ceram Int. 2013;39(3):2239-2246.
30.    Hemalatha D, Shanmugapriya B. Synthesis, characterization and antibacterial activity of copper oxide nanoparticles. Nanoscale Reports. 2020;3(2):42-46.
31.    Mammadyarova SJ. Synthesis and characterization of cobalt oxide nanostructures. a brief review. Azerbaijan Chemical Journal. 2021(2):80-93.
32.    . Adsorptive Removal of Methylene Blue from Aqueous Solution Using Sawdust. 2022.
33.    Narayanan KB, Sakthivel N, Han SS. From Chemistry to Biology: Applications and Advantages of Green, Biosynthesized/Biofabricated Metal- and Carbon-based Nanoparticles. Fibers and Polymers. 2021;22(4):877-897.
34.    Hesabizadeh T, Hicks E, Medina Cruz D, Bourdo SE, Watanabe F, Bonney M, et al. Synthesis of “Naked” TeO2 Nanoparticles for Biomedical Applications. ACS Omega. 2022;7(27):23685-23694.
35.    Chang H-Y, Cang J, Roy P, Chang H-T, Huang Y-C, Huang C-C. Synthesis and Antimicrobial Activity of Gold/Silver–Tellurium Nanostructures. ACS Applied Materials & Interfaces. 2014;6(11):8305-8312.
36.    Zaitseva NV, Zemlyanova MA, Zvezdin VN, Akafieva TI, Saenko EV. Acute inhalation toxicity of manganese oxide nanoparticles. Nanotechnologies in Russia. 2015;10(5-6):468-474.
37.    Wan S, Ding W, Wang Y, Wu J, Gu Y, He F. Manganese oxide nanoparticles impregnated graphene oxide aggregates for cadmium and copper remediation. Chem Eng J. 2018;350:1135-1143.
38.    Dang T-D, Cheney MA, Qian S, Joo SW, Min B-K. A Novel Rapid One-Step Synthesis of Manganese Oxide Nanoparticles at Room Temperature Using Poly(dimethylsiloxane). Industrial  Engineering Chemistry Research. 2013;52(7):2750-2753.

留言 (0)

沒有登入
gif