Nanosized TiO2 Induced Ovarian Alterations in NMRI Mice Treated with Isoniazid

1.    Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol. 2022;76(1):661-680.
2.    Gils T, Lynen L, de Jong BC, Van Deun A, Decroo T. Pretomanid for tuberculosis: a systematic review. Clinical Microbiology and Infection. 2022;28(1):31-42.
3.    Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology. 2022;20(11):685-701.
4.    Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nature Reviews Microbiology. 2022;20(12):750-766.
5.    Sharan R, Ganatra SR, Singh DK, Cole J, Foreman TW, Thippeshappa R, et al. Isoniazid and rifapentine treatment effectively reduces persistent M. tuberculosis infection in macaque lungs. J Clin Invest. 2022;132(18).
6.    Vilchèze C, Jacobs WR. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Molecular Genetics of Mycobacteria: ASM Press; 2015. p. 431-453.
7.    Estrada-Cruz NA, Manuel-Apolinar L, Segura-Uribe JJ, Almanza-Pérez JC, Fortis-Barrera Á, Orozco-Suárez S, et al. Short-term administration of tibolone reduces inflammation and oxidative stress in the hippocampus of ovariectomized rats fed high-fat and high-fructose. Nutr Neurosci. 2022;26(4):275-289.
8.    Hammond GL, Rabe T, Wagner JD. Preclinical profiles of progestins used in formulations of oral contraceptives and hormone replacement therapy. Am J Obstet Gynecol. 2001;185(2):S24-S31.
9.    Dragostin I, Dragostin O-M, Iacob AT, Dragan M, Chitescu CL, Confederat L, et al. Chitosan Microparticles Loaded with New Non-Cytotoxic Isoniazid Derivatives for the Treatment of Tuberculosis: In Vitro and In Vivo Studies. Polymers. 2022;14(12):2310.
10.    Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Frontiers in Chemistry. 2020;8.
11.    Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem. 2018.
12.    Kim D, Shin K, Kwon SG, Hyeon T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv Mater. 2018;30(49).
13.    Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications – a review. Acta Biomater. 2020;105:26-43.
14.    Rashid MM, Forte Tavčer P, Tomšič B. Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials. 2021;11(9):2354.
15.    Javed R, Ain Nu, Gul A, Arslan Ahmad M, Guo W, Ao Q, et al. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up‐to‐date review. IET Nanobiotechnology. 2022;16(5):171-189.
16.    Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. <p>Biomedical Applications of TiO2 Nanostructures: Recent Advances. International Journal of Nanomedicine. 2020;Volume 15:3447-3470.
17.    Abdulrazzaq Naji S, Behroozibakhsh M, Jafarzadeh Kashi TS, Eslami H, Masaeli R, Mahgoli H, et al. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). The Journal of Advanced Prosthodontics. 2018;10(2):113.
18.    Insight of the Influence of Magnetic-Field Direction on Magneto-Plasmonic Interfaces for Tuning Photocatalytical Performance of Semiconductors. American Chemical Society (ACS).
19.    Zhang L, Bai H, Liu L, Sun DD. Dimension induced intrinsic physio-electrical effects of nanostructured TiO2 on its antibacterial properties. Chem Eng J. 2018;334:1309-1315.
20.    Sievers NV, Pollo LD, Corção G, Medeiros Cardozo NS. In situ synthesis of nanosized TiO2 in polypropylene solution for the production of films with antibacterial activity. Materials Chemistry and Physics. 2020;246:122824.
21.    David OM, Lategan KL, de Cortalezzi MF, Pool EJ. The Stability and Anti-Angiogenic Properties of Titanium Dioxide Nanoparticles (TiO2NPs) Using Caco-2 Cells. Biomolecules. 2022;12(10):1334.
22.    Kusumoputro S, Tseng S, Tse J, Au C, Lau C, Wang X, et al. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID‐19. VIEW. 2020;1(4).
23.    Yadav K, Pradhan M, Singh D, Singh MR. Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches. Translational Autoimmunity: Elsevier; 2022. p. 361-393.
24.    Shareghi B, Farhadian S, Zamani N, Salavati-Niasari M, Gholamrezaei S. Stability and enzyme activity of lysozyme in the presence of Fe3O4 nanoparticles. Monatshefte für Chemie - Chemical Monthly. 2015;147(2):465-471.
25.    Madhubala V, Pugazhendhi A, Thirunavukarasu K. Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines - An in vitro study. Process Biochem. 2019;86:186-195.
26.    Chakrabarti S, Goyary D, Karmakar S, Chattopadhyay P. Exploration of cytotoxic and genotoxic endpoints following sub-chronic oral exposure to titanium dioxide nanoparticles. Toxicology and Industrial Health. 2019;35(9):577-592.
27.    Dantas GPF, Ferraz FS, Andrade LM, Costa GMJ. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chemico-Biological Interactions. 2022;363:110023.
28.    Saad Dhaif S, Al-Attar NS. Evaluation the effect of prodigiosin on algd expression in clinical isolates of pseudomonas aeruginosa. Wiad Lek. 2021;74(9):2265-2276.
29.    Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: A physicochemical perspective. Advances in Colloid and Interface Science. 2015;218:48-68.
30.    Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, et al. Acute Toxicity of Intravenously Administered Titanium Dioxide Nanoparticles in Mice. PLoS One. 2013;8(8):e70618.
31.    Feldman AT, Wolfe D. Tissue Processing and Hematoxylin and Eosin Staining. Histopathology: Springer New York; 2014. p. 31-43.
32.    Zhao X, Ze Y, Gao G, Sang X, Li B, Gui S, et al. Nanosized TiO2-Induced Reproductive System Dysfunction and Its Mechanism in Female Mice. PLoS One. 2013;8(4):e59378.
33.    Hong F, Yu X, Wu N, Zhang Y-Q. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicology Research. 2017;6(2):115-133.
34.    Boey A, Ho HK. All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. Small. 2020;16(21).

 

留言 (0)

沒有登入
gif