Effect and Mechanism of Mycobacterium avium MAV-5183 on Apoptosis of Mouse Ana-1 Macrophages

Kang, Y. A. & Koh, W. J. (2016). Antibiotic treatment for nontuberculous mycobacterial lung disease. Expert Review of Respiratory Medicine, 10, 557–568.

Article  CAS  PubMed  Google Scholar 

Wang, X., Chen, S., Ren, H., Chen, J., Li, J., Wang, Y., Hua, Y., Wang, X. & Huang, N. (2019). HMGN2 regulates non-tuberculous mycobacteria survival via modulation of M1 macrophage polarization. Journal of Cellular and Molecular Medicine, 23, 7985–7998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vergne, I., Chua, J., Singh, S. B. & Deretic, V. (2004). Cell biology of mycobacterium tuberculosis phagosome. Annual Review of Cell and Developmental Biology, 20, 367–394.

Article  CAS  PubMed  Google Scholar 

Bhattacharyya, A., Pathak, S., Basak, C., Law, S., Kundu, M. & Basu, J. (2003). Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. Journal of Biological Chemistry, 278, 26517–26525.

Article  CAS  PubMed  Google Scholar 

Bermudez, L. E., Parker, A. & Petrofsky, M. (1999). Apoptosis of Mycobacterium avium-infected macrophages is mediated by both tumour necrosis factor (TNF) and Fas, and involves the activation of caspases. Clinical & Experimental Immunology, 116, 94–99.

Article  CAS  Google Scholar 

Lee, K. I., Whang, J., Choi, H. G., Son, Y. J., Jeon, H. S., Back, Y. W., Park, H. S., Paik, S., Park, J. K., Choi, C. H. & Kim, H. J. (2016). Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Scientific Reports, 6, 37804.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Lewis, M. S., Danelishvili, L., Rose, S. J., & Bermudez, L. E. (2019). MAV_4644 interaction with the host cathepsin Z protects mycobacterium avium subsp. hominissuis from rapid macrophage killing. Microorganisms, 7, 144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bermudez, L. E., Danelishvili, L., Babrack, L. & Pham, T. (2015). Evidence for genes associated with the ability of Mycobacterium avium subsp. hominissuis to escape apoptotic macrophages. Frontiers in Cellular and Infection Microbiology, 5, 63.

Article  PubMed  PubMed Central  Google Scholar 

Shin, A. R., Lee, K. S., Lee, K. I., Shim, T. S., Koh, W. J., Jeon, H. S., Son, Y. J., Shin, S. J. & Kim, H. J. (2013). Serodiagnostic potential of Mycobacterium avium MAV2054 and MAV5183 proteins. Clinical and Vaccine Immunology, 20, 295–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gidon, A., Louet, C., Rost, L. M., Bruheim, P., & Flo, T. H. (2021). The tumor necrosis factor alpha and interleukin 6 auto-paracrine signaling loop controls mycobacterium avium infection via induction of IRF1/IRG1 in human primary macrophages. mBio, 12, e0212121.

Article  PubMed  Google Scholar 

Rodrigues, M. F., Barsante, M. M., Alves, C. C., Souza, M. A., Ferreira, A. P., Amarante-Mendes, G. P., & Teixeira, H. C. (2009). Apoptosis of macrophages during pulmonary Mycobacterium bovis infection: correlation with intracellular bacillary load and cytokine levels. Immunology, 128, e691–e699.

Article  PubMed  PubMed Central  Google Scholar 

Wojtas, B., Fijalkowska, B., Wlodarczyk, A., Schollenberger, A., Niemialtowski, M., Hamasur, B., Pawlowski, A. & Krzyzowska, M. (2011). Mannosylated lipoarabinomannan balances apoptosis and inflammatory state in mycobacteria-infected and uninfected bystander macrophages. Microbial Pathogenesis, 51, 9–21.

Article  CAS  PubMed  Google Scholar 

Lee, K. I., Choi, H. G., Son, Y. J., Whang, J., Kim, K., Jeon, H. S., Park, H. S., Back, Y. W., Choi, S., Kim, S. W., Choi, C. H., & Kim, H. J. (2016). Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4. Apoptosis, 21, 459–472.

Article  CAS  PubMed  Google Scholar 

Ding, S., Li, X., & Gao, J. (2021). Bioinformatics analysis of MAV—5183 protein of Mycobacterium avium tuberculosis. Chinese. Journal of Pathogen Biology, 16, 1153–1157.

Google Scholar 

Sánchez, A., Espinosa, P., García, T. & Mancilla, R. (2012). The 19 kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clinical and Developmental Immunology, 2012, 950503.

Article  PubMed  PubMed Central  Google Scholar 

Li, Y., Miltner, E., Wu, M., Petrofsky, M. & Bermudez, L. E. (2005). A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cellular Microbiology, 7, 539–548.

Article  CAS  PubMed  Google Scholar 

Abate, M., Festa, A., Falco, M., Lombardi, A., Luce, A., Grimaldi, A., Zappavigna, S., Sperlongano, P., Irace, C., Caraglia, M. & Misso, G. (2020). Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell and Developmental Biology, 98, 139–153.

Article  CAS  PubMed  Google Scholar 

Ganju, N. & Eastman, A. (2002). Bcl-X(L) and calyculin A prevent translocation of Bax to mitochondria during apoptosis. Biochemical and Biophysical Research Communications, 291, 1258–1264.

Article  CAS  PubMed  Google Scholar 

Sohn, H., Kim, J. S., Shin, S. J., Kim, K., Won, C. J., Kim, W. S., Min, K. N., Choi, H. G., Lee, J. C., Park, J. K., & Kim, H. J. (2011). Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathogens, 7, e1002435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuai, S. G., Pei, H., Huang, L. H., Liu, Z. H., Mai, G. L., Liu, J. & Cui, Z. L. (2013). [Cell death of THP-1 induced by puried Rv3671c protein of tuberculosis and the detection of TNF-α and IL-1β in Mycobacterium tuberculosis]. Zhonghua Yu Fang Yi Xue Za Zhi 47, 444–447.

Denis, M.(1991). Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. Journal of Leukocyte Biology, 49, 380–387.

Article  ADS  CAS  PubMed  Google Scholar 

Zuo, X., Wang, L., Bao, Y. & Sun, J. (2020). The ESX-1 virulence factors downregulate miR-147-3p in mycobacterium marinum-infected macrophages. Infection and Immunity, 88, e00088–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knight, V.(2022). Immunodeficiency and autoantibodies to cytokines. Journal of Applied Laboratory Medicine, 7, 151–164.

Article  PubMed  Google Scholar 

Al-Aska, A., Al-Anazi, A. R., Al-Subaei, S. S., Al-Hedaithy, M. A., Barry, M. A., Somily, A. M., Buba, F., Yusuf, U. & Al Anazi, N. A. (2011). CD4+ T-lymphopenia in HIV negative tuberculous patients at King Khalid University Hospital in Riyadh, Saudi Arabia. European Journal of Medical Research, 16, 285–288.

Article  PubMed  PubMed Central  Google Scholar 

Nalukwago, S., Lancioni, C. L., Oketcho, J. B., Canaday, D. H. E., Boom, W. H., Ojok, L. & Mayanja-Kizza, H. (2017). The effect of interrupted anti-retroviral treatment on the reconstitution of memory and naive T cells during tuberculosis treatment in HIV patients with active pulmonary tuberculosis. African Health Sciences, 17, 954–962.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, S. Y., Li, X. B., Hou, S. G., Sun, Y., Shi, Y. R. & Lin, S. S. (2016). Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. International Journal of Molecular Medicine, 38, 291–299.

Article  CAS  PubMed  Google Scholar 

Han, X., Kou, J., Zheng, Y., Liu, Z., Jiang, Y., Gao, Z., Cong, L. & Yang, L. (2019). ROS generated by upconversion nanoparticle-mediated photodynamic therapy induces autophagy via PI3K/AKT/ mTOR signaling pathway in M1 peritoneal macrophage. Cellular Physiology and Biochemistry, 52, 1325–1338.

Article  CAS  PubMed  Google Scholar 

Kim, G. Y., Jeong, H., Yoon, H. Y., Yoo, H. M., Lee, J. Y., Park, S. H., & Lee, C. E. (2020). Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Reports, 53, 640–645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redza-Dutordoir, M. & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta, 1863, 2977–2992.

Article  CAS  PubMed  Google Scholar 

Subbian, S., Mehta, P. K., Cirillo, S. L., & Cirillo, J. D. (2007). The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species. BMC Microbiology, 7, 4.

Article  PubMed  PubMed Central  Google Scholar 

Yabaji, S. M., Mishra, A. K., Chatterjee, A., Dubey, R. K., Srivastava, K. & Srivastava, K. K. (2017). Peroxiredoxin-1 of macrophage is critical for mycobacterial infection and is controlled by early secretory antigenic target protein through the activation of p38 MAPK. Biochemical and Biophysical Research Communications, 494, 433–439.

Article  CAS  PubMed  Google Scholar 

Yang, Y., Xu, P., He, P., Shi, F., Tang, Y., Guan, C., Zeng, H., Zhou, Y., Song, Q., Zhou, B., Jiang, S., Shao, C., Sun, J., Yang, Y., Wang, X., & Song, H. (2020). Mycobacterial PPE13 activates inflammasome by interacting with the NATCH and LRR domains of NLRP3. The Faseb Journal, 34, 12820–12833.

Article  CAS  PubMed  Google Scholar 

Wu, M. F., Shu, C. C., Wang, J. Y., Yan, B. S., Lai, H. C., Chiang, B. L., Wu, L. S., & Yu, C. J. (2019). NLRP3 inflammasome is attenuated in patients with Mycobacterium avium complex lung disease and correlated with decreased interleukin-1β response and host susceptibility. Scientific Reports, 9, 12534.

Article  ADS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif