DEAD Box RNA Helicases: Biochemical Properties, Role in RNA Processing and Ribosome Biogenesis

Caruthers, J. M., & McKay, D. B. (2002). Helicase structure and mechanism. Current Opinion in Structural Biology, 12, 123–133.

Article  CAS  PubMed  Google Scholar 

Tanner, N. K., Cordin, O., Banroques, J., Doere, M., & Linder, P. (2003). The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Molecular Cell, 11, 127–138.

Article  CAS  PubMed  Google Scholar 

Linder, P., & Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.

Article  CAS  PubMed  Google Scholar 

Cordin, O., Banroques, J., Tanner, N. K., & Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene, 367, 17–37.

Article  CAS  PubMed  Google Scholar 

Jarmoskaite, I., & Russell, R. (2011a). DEAD-box proteins as RNA helicases and chaperones. Wiley Interdisciplinary Reviews RNA, 2, 135–152.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocak, S., & Linder, P. (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nature Reviews Molecular Cell Biology, 5, 232–241.

Article  CAS  PubMed  Google Scholar 

Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B., & Kisker, C. (1999). Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. The EMBO Journal, 18, 6899–6907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J. L., Morgenstern, K. A., Griffith, J. P., Dwyer, M. D., Thomson, J. A., Murcko, M. A., Lin, C., Caron, P. R. J. S., (1998). Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100.

Yao, N., Hesson, T., Cable, M., Hong, Z., Kwong, A. D., Le, H. V., & Weber, P. C. (1997). Structure of the hepatitis C virus RNA helicase domain. Nature Structural and Molecular Biology, 4, 463–467.

Article  CAS  Google Scholar 

Story, R. M., Li, H., & Abelson, J. N. (2001). Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proceedings of the National Academy of Sciences of the United States of America, 98, 1465–1470.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Caruthers, J. M., Johnson, E. R., & McKay, D. B. (2000). Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proceedings of the National Academy of Sciences of the United States of America, 97, 13080–13085.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Del Campo, M., & Lambowitz, A. M. J. M. (2009). Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. c, 35, 598–609.

Google Scholar 

Hilbert, M., Karow, A. R., & Klostermeier, D. (2009). The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. https://doi.org/10.1515/BC.2009.135.

Pan, C., & Russell, R. J. R. (2010). Roles of DEAD-box proteins in RNA and RNP folding. RNA Biology, 7, 667–676.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jarmoskaite, I., & Russell, R. (2011b) DEAD‐box proteins as RNA helicases and chaperones. Wiley Interdisciplinary Reviews RNA, 2, 135–152.

Diges, C. M., & Uhlenbeck, O. C. (2001). Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. The EMBO Journal, 20, 5503–5512.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandran, V., Poljak, L., Vanzo, N. F., Leroy, A., Miguel, R. N., Fernandez-Recio, J., Parkinson, J., Burns, C., Carpousis, A. J., & Luisi, B. F. (2007). Recognition and cooperation between the ATP-dependent RNA helicase RhlB and ribonuclease RNase E. Journal of Molecular Biology, 367, 113–132.

Article  CAS  PubMed  Google Scholar 

Rogers, Jr., G. W., Richter, N. J., Lima, W. F., & Merrick, W. C. (2001). Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. Journal of Biological Chemistry, 276, 30914–30922.

Article  CAS  PubMed  Google Scholar 

Rogers Jr, G. W., Komar, A. A., & Merrick, W. C. (2002). eIF4A: the godfather of the DEAD box helicases. Progress in Nucleic Acid Research and Molecular Biology, 72, 307–331.

Delagoutte, E., & Von Hippel, P. H. J. Q. (2002). Helicase mechanisms and the coupling of helicases within macromolecular machines part I: structures and properties of isolated helicases. r.o.b., 35, 431–478.

CAS  Google Scholar 

Diges, C. M., & Uhlenbeck, O. C. (2005). Escherichia coli DbpA is a 3′ –> 5′ RNA helicase. Biochemistry, 44, 7903–7911.

Article  CAS  PubMed  Google Scholar 

Bizebard, T., Ferlenghi, I., Iost, I., & Dreyfus, M. (2004). Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry, 43, 7857–7866.

Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., & Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287–300.

Vanzo, N., (1999). Le degradosome d’arn: etude structurale et fonctionnelle d’un complexe implique dans la degradation de l’arn chez escherichia coli. Toulouse 3.

Vanzo, N. F., Li, Y. S., Py, B., Blum, E., Higgins, C. F., Raynal, L. C., Krisch, H. M., & Carpousis, A. J. J. (1998). Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Development, 12, 2770–2781.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harms, U., Andreou, A. Z., Gubaev, A., & Klostermeier, D. (2014). eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Research, 42, 7911–7922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iost, I., & Dreyfus, M. (2006). DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Research, 34, 4189–4197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilman, B., Tijerina, P., & Russell, R. (2017). Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochemical Society Transactions, 45, 1313–1321.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henn, A., Shi, S. P., Zarivach, R., Ben-Zeev, E., & Sagi, I. (2002). The RNA helicase DbpA exhibits a markedly different conformation in the ADP-bound state when compared with the ATP- or RNA-bound states. Journal of Biological Chemistry, 277, 46559–46565.

Article  CAS  PubMed  Google Scholar 

Karginov, F. V., & Uhlenbeck, O. C. (2004). Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme. Nucleic Acids Research, 32, 3028–3032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nierhaus, K. H. (1991). The assembly of prokaryotic ribosomes. Biochimie, 73, 739–755.

Article  CAS  PubMed  Google Scholar 

Srivastava, A. K., & Schlessinger, D. (1990). Mechanism and regulation of bacterial ribosomal RNA processing. Annual Review of Microbiology, 44, 105–129.

Article  CAS  PubMed  Google Scholar 

Lindahl, L. J. J. (1975). Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. Journal of Molecular Biology, 92(1), 15–37.

Article  MathSciNet  CAS  PubMed  Google Scholar 

Britton, R. A. (2009). Role of GTPases in bacterial ribosome assembly. Annual Review of Microbiology, 63, 155–176.

Article  CAS  PubMed  Google Scholar 

Shajani, Z., Sykes, M. T., & Williamson, J. R. (2011). Assembly of bacterial ribosomes. Annual Review of Biochemistry, 80, 501–526.

Article  CAS  PubMed  Google Scholar 

Wilson, D. N., & Nierhaus, K. H. (2007). The weird and wonderful world of bacterial ribosome regulation. Critical Reviews in Biochemistry and Molecular Biology, 42, 187–219.

Article  CAS  PubMed  Google Scholar 

Fromont-Racine, M., Senger, B., Saveanu, C., Fasiolo, F. (2003) Ribosome assembly in eukaryotes. Gene, 313, 17–42.

Kressler, D., Hurt, E., & Bassler, J. (2010). Driving ribosome assembly. Biochimica et Biophysica Acta, 1803, 673–683.

Article  CAS  PubMed  Google Scholar 

Nishi, K., Morel-Deville, F., Hershey, J. W., Leighton, T., & Schnier, J. (1988). An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature, 336, 496–498.

Article  ADS  CAS  PubMed  Google Scholar 

Jagessar, K. L., & Jain, C. (2010). Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases. RNA, 16, 1386–1392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charollais, J., Pflieger, D., Vinh, J., Dreyfus, M., & Iost, I. (2003). The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Molecular Microbiology, 48, 1253–1265.

Article  CAS  PubMed  Google Scholar 

Spillmann, S., Dohme, F., & Nierhaus, K. H. (1977). Assembly in vitro of the 50 S subunit from Escherichia coli ribosomes: proteins essential for the first heat-dependent conformational change. Journal of Molecular Biology, 115, 513–523.

Article 

留言 (0)

沒有登入
gif