Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens

Requier F, Antúnez K (2020) Pérdidas de colmenas en Latinoamérica. Resultados: 2016/2017 SOLATINA (Sociedad Latinoamericana de Instigación en Abejas). https://solatina.org/perdidas-2016-2017/

Albo GN, Reynaldi FJ (2010) Ascosphaera apis, agente etiológico de la cría yesificada de las abejas. Rev Argent Microbiol 42(1):80

CAS  PubMed  Google Scholar 

Aronstein K, Murray KD (2010) Chalkbrood disease in honey bees. J Invertebr Pathol 103(Suppl 1):S20–S29

Article  PubMed  Google Scholar 

Jensen AB, Aronstein K, Flores JM, Vojvodic S, Palacio MA, Spivak M (2013) Standard methods for fungal brood disease research. J Apic Res 52(1):1–20

Article  Google Scholar 

Maxfield-Taylor SA, Mujic AB, Rao S (2015) First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE 10(4):e0124868

Article  PubMed  PubMed Central  Google Scholar 

Chen D, Guo R, Xiong C, Zheng Y, Hou C, Fu Z (2018) Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis ceranae. J Apic Res 57(4):1–6

Article  Google Scholar 

Pereira KS, Meeus I, Guy S (2019) Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Sci Rep 9(4241):1–9. https://doi.org/10.1038/s41598-019-40804-2

Article  CAS  Google Scholar 

Reynaldi FJ, Lucia M, Garcia Genchi ML (2015) Ascosphaera apis, the entomopathogenic fungus affecting larvae of native bees (Xylocopa augusti): first report in South America. Rev Iberoam Micol. https://doi.org/10.1016/j.riam.2015.01.001

Article  PubMed  Google Scholar 

Foley K, Fazio G, Jensen AB, Hughes WO (2014) The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Vet Microbiol 169(3–4):203–210. https://doi.org/10.1016/j.vetmic.2013.11.029

Article  PubMed  Google Scholar 

Hatmaker EA, Miller DL, Newton I, Rokas A (2022) Draft genome sequence of an aspergillus strain isolated from a honey bee pupa. Microbiol Resour Announc 11(11):e00798-22. https://doi.org/10.1128/mra.00798-22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becchimanzi A, Nicoletti R (2022) Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 13:968963. https://doi.org/10.3389/fmicb.2022.968963

Article  PubMed  PubMed Central  Google Scholar 

Dickel F, Bos NM, Hughes H, Martín-Hernández R, Higes M, Kleiser A, Freitak D (2022) The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American Foulbrood infection in honey bees—a safety and efficacy study. Front Vet 9:946237. https://doi.org/10.3389/fvets.2022.946237

Article  Google Scholar 

Iorizzo M, Lombardi SJ, Ganassi S, Testa B, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, Cristofaro A (2020) Antagonistic activity against Ascosphaera apis and functional properties of Lactobacillus kunkeei strains. Antibiotics (Basel, Switzerland) 9(5):262. https://doi.org/10.3390/antibiotics9050262

Article  CAS  PubMed  Google Scholar 

Iorizzo M, Testa B, Lombardi SJ, Ganassi S, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, De Cristofaro A (2020) Antimicrobial activity against Paenibacillus larvae and functional properties of Lactiplantibacillus plantarum strains: potential benefits for honeybee health. Antibiotics 9:442. https://doi.org/10.3390/antibiotics9080442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaga GV, Chițescu CL, Lisă EL, Dumitru C, Vizireanu C, Borda D (2020) Análisis de residuos antifúngicos en varios análisis de muestras de miel rumanas mediante espectrometría de masas de alta resolución. J Environ Sci Health B 55(5):484–549. https://doi.org/10.1080/03601234.2020.1724016

Article  CAS  PubMed  Google Scholar 

Bogdanov S, Charrière JD, Imdorf A, Kilchenmann V, Fluri P (2002) Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie 33(4):399–409

Article  CAS  Google Scholar 

Mitton GA, Quintana S, Giménez-Martínez P, Mendoza Y, Ramallo G, Brasesco C, Villalba A, Eguaras M, Maggi MD, Ruffinengo SR (2016) First record of resistance to flumethrin in a Varroa population from Uruguay. J Apic Res 55(5):422–427. https://doi.org/10.1080/00218839.2016.1257238

Article  Google Scholar 

Thompson HM, Brown MA, Ball RF, Bew MH (2002) First report of Varroa destructor resistance to pyrethroids in U.K. Apidologie 33:357–366

Article  CAS  Google Scholar 

Audisio MC, Sabaté DC, Benítez-Ahrendts MR (2015) Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef Microbes 6(5):687–695. https://doi.org/10.3920/BM2014.0155

Article  CAS  PubMed  Google Scholar 

Audisio MC (2017) Gram-positive bacteria with probiotic potential for the Apis mellifera L. honey bee: the experience in the northwest of Argentina. Probiotics Antimicrob Proteins 9(1):22–31. https://doi.org/10.1007/s12602-016-9231-0

Article  CAS  PubMed  Google Scholar 

Novicov-Fanciotti M, Tejerina M, Benítez-Ahrendts MR, Audisio MC (2017) Honey yield of different commercial apiaries treated with Lactobacillus salivarius A3iob, a new bee-probiotic strain. Benef Microbes 9(2):291–298. https://doi.org/10.3920/BM2017.0089

Article  Google Scholar 

Tejerina MR, Benítez-Ahrendts MR, Audisio MC (2020) Lactobacillus salivarius A3iob reduces the incidence of Varroa destructor and Nosema Spp. in commercial apiaries located in the northwest of Argentina. Probiotics Antimicrob Proteins 12(4):1360–1369. https://doi.org/10.1007/s12602-020-09638-7

Article  PubMed  Google Scholar 

Tejerina MR, Cabana MJ, Benitez-Ahrendts MR (2021) Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J Invertebr Pathol 178:107521. https://doi.org/10.1016/j.jip.2020.107521

Article  CAS  PubMed  Google Scholar 

Anderson KE, Carroll MJ, Sheehan T, Mott BM, Maes P, Corby-Harris V (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. https://doi.org/10.1111/mec.12966

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tlak I, Nejedli S, Cvetnić L (2023) Influence of probiotic feed supplement on Nosema spp. infection level and the gut microbiota of adult honeybees (Apis mellifera L.). Microorganisms 11(3):610. https://doi.org/10.3390/microorganisms1103061

Article  Google Scholar 

Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2(1):29–34. https://doi.org/10.3920/BM2010.0024

Article  CAS  PubMed  Google Scholar 

Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE 7:e33188. https://doi.org/10.1371/journal.pone.0033188.t002

Article  PubMed  PubMed Central  Google Scholar 

Albo G, Córdoba S, Reynaldi F (2017) Chalkbrood: pathogenesis and the interaction with honeybee defenses. Int J Environ Agric Res 3(1):71–80

Google Scholar 

Forsgren E, Olofsson T, Vásquez A, Fries I (2009) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108

Article  Google Scholar 

McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21:1754–1768. https://doi.org/10.1111/j.1365-294X.2012.05496.x

Article  PubMed  Google Scholar 

de Paula GT, Menezes C, Pupo MT, Rosa CA (2021) Stingless bees and microbial interactions. Curr Opin Insect Sci 44:41–47. https://doi.org/10.1016/j.cois.2020.11.006

Article  PubMed  Google Scholar 

Michener CD (2013) The meliponini. In: Vit P, Pedro SR, Roubik D (eds) Pot-honey: a legacy of stingless bees. New York, Springer, pp 3–17

Chapter  Google Scholar 

Roig-Alsina AH, Alvarez LJ (2017) Southern distributional limits of Meliponini bees (Hymenoptera, Apidae) in the Neotropics: taxonomic notes and distribution of Plebeia droryana and P emerinoides in Argentina. Zootaxa 4244:261–268. https://doi.org/10.11646/zootaxa.4244.2.7

Article  PubMed  Google Scholar 

Porrini MP, Porrini LP, Garrido PM, de Melo E, Silva Neto C, Porrini DP, Muller F, Nuñez LA, Alvarez L, Iriarte PF, Eguaras MJ (2017) Nosema ceranae in South American native stingless bees and social wasp. Microb Ecol 74(4):761–764. https://doi.org/10.1007/s00248-017-0975-1

Article  PubMed  Google Scholar 

Flores FF, Hilgert NI, Lupo LC (2018) Melliferous insects and the uses assigned to their products in the northern Yungas of Salta. Argentina. J Ethnobiol Ethnomed 14:27. https://doi.org/10.1186/s13002-018-0222-y

Article  PubMed  PubMed Central  Google Scholar 

Zamudio F, Hilgert NI (2012) Descriptive attributes used in the characterization of stingless bees (Apidae: Meliponini) in rural populations of the Atlantic forest (Misiones-Argentina). J Ethnobiol Ethnomed. https://doi.org/10.1186/1746-4269-8-9

Article  PubMed  PubMed Central  Google Scholar 

Flores FF, Sánchez AC (2010) Primeros resultados de la caracterización botánica de mieles producidas por Tetragonisca angustula (Apidae, Meliponinae) en Los Naranjos, Salta, Argentina. Bol Soc Argent Bot 45(1–2):81–91

Google Scholar 

Vit P, Gutiérrez MG, Rodríguez-Malaver AJ, Aguilera G, Fernández-Díaz C Tricio AE (2009) Comparación de mieles producidas por la abeja yateí (Tetragonisca fiebrigi)en Argentina y Paraguay. Acta bioquímica clín latinoam 43(2):219–226

留言 (0)

沒有登入
gif