Tetramerization of pyruvate kinase M2 attenuates graft-versus-host disease by inhibition of Th1 and Th17 differentiation

Zorn E. CD4+CD25+ regulatory T cells in human hematopoietic cell transplantation. Semin Cancer Biol. 2006;16(2):150–9. https://doi.org/10.1016/j.semcancer.2005.11.008.

Article  CAS  PubMed  Google Scholar 

Zitzer NC, Garzon R, Ranganathan P. Toll-like receptor stimulation by microRNAs in acute graft-vs.-host disease. Front Immunol. 2018;9:2561. https://doi.org/10.3389/fimmu.2018.02561.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morin F, Kavian N, Marut W, Chereau C, Cerles O, Grange P, et al. Inhibition of EGFR tyrosine kinase by erlotinib prevents sclerodermatous graft-versus-host disease in a mouse model. J Investig Dermatol. 2015;135(10):2385–93. https://doi.org/10.1038/jid.2015.174.

Article  CAS  PubMed  Google Scholar 

Nishimori H, Maeda Y, Teshima T, Sugiyama H, Kobayashi K, Yamasuji Y, et al. Synthetic retinoid Am 80 ameliorates chronic graft-versus-host disease by down-regulating Th1 and Th17. Blood. 2012;119(1):285–95. https://doi.org/10.1182/blood-2011-01-332478.

Article  CAS  PubMed  Google Scholar 

Malard F, Chevallier P, Guillaume T, Delaunay J, Rialland F, Harousseau JL, et al. Continuous reduced nonrelapse mortality after allogeneic hematopoietic stem cell transplantation: a single-institution’s three decade experience. Biol Blood Marrow Transplant. 2014;20(8):1217–23. https://doi.org/10.1016/j.bbmt.2014.04.021.

Article  PubMed  Google Scholar 

Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61. https://doi.org/10.1016/s0140-6736(09)60237-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jenq RR, van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer. 2010;10(3):213–21. https://doi.org/10.1038/nrc2804.

Article  CAS  PubMed  Google Scholar 

Castilla-Llorente C, Martin PJ, McDonald GB, Storer BE, Appelbaum FR, Deeg HJ, et al. Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2014;49(7):966–71. https://doi.org/10.1038/bmt.2014.69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, et al. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 2021;503:240–8. https://doi.org/10.1016/j.canlet.2020.11.018.

Article  CAS  PubMed  Google Scholar 

Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab. 2020;31(2):391-405 e8. https://doi.org/10.1016/j.cmet.2019.10.015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kono M, Maeda K, Stocton-Gavanescu I, Pan W, Umeda M, Katsuyama E, et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.127395.

Article  PubMed  PubMed Central  Google Scholar 

Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15(4):300–8. https://doi.org/10.1016/j.semcancer.2005.04.009.

Article  CAS  PubMed  Google Scholar 

Zou J, Huang R, Chen Y, Huang X, Li H, Liang P, et al. Dihydropyrimidinase like 2 promotes bladder cancer progression via pyruvate kinase M2-induced aerobic glycolysis and epithelial-mesenchymal transition. Front Cell Dev Biol. 2021;9: 641432. https://doi.org/10.3389/fcell.2021.641432.

Article  PubMed  PubMed Central  Google Scholar 

Zou Y, Wang R, Zhao J, Cai Y, Zhong W. Increased M2 isoform of pyruvate kinase in fibroblasts contributes to the growth, aggressiveness, and osteoclastogenesis of odontogenic keratocysts. Am J Pathol. 2021;191(5):857–71. https://doi.org/10.1016/j.ajpath.2021.02.010.

Article  CAS  PubMed  Google Scholar 

Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80. https://doi.org/10.1016/j.biocel.2010.02.005.

Article  CAS  PubMed  Google Scholar 

Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64. https://doi.org/10.1146/annurev-cellbio-092910-154237.

Article  CAS  PubMed  Google Scholar 

MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83. https://doi.org/10.1146/annurev-immunol-032712-095956.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long J, Chang L, Shen Y, Gao WH, Wu YN, Dou HB, et al. Valproic acid ameliorates graft-versus-host disease by downregulating Th1 and Th17 cells. J Immunol. 2015;195(4):1849–57. https://doi.org/10.4049/jimmunol.1500578.

Article  CAS  PubMed  Google Scholar 

Cao Y, Rathmell JC, Macintyre AN. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE. 2014;9(8): e104104. https://doi.org/10.1371/journal.pone.0104104.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35(6):871–82. https://doi.org/10.1016/j.immuni.2011.09.021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SY, Park MJ, Kwon JE, Jung KA, Jhun JY, Lee SY, et al. Cucurbitacin E ameliorates acute graft-versus-host disease by modulating Th17 cell subsets and inhibiting STAT3 activation. Immunol Lett. 2018;203:62–9. https://doi.org/10.1016/j.imlet.2018.09.012.

Article  CAS  PubMed  Google Scholar 

Zoller M. Immunotherapy of cancer for the elderly patient: does allogeneic bone marrow transplantation after nonmyeloablative conditioning provide a new option? Cancer Immunol Immunother. 2004;53(8):659–76. https://doi.org/10.1007/s00262-004-0503-2.

Article  PubMed  Google Scholar 

Zoehler B, Fracaro L, Senegaglia AC, Bicalho MDG. Infusion of mesenchymal stem cells to treat graft versus host disease: the role of HLA-G and the impact of its polymorphisms. Stem Cell Rev Rep. 2020;16(3):459–71. https://doi.org/10.1007/s12015-020-09960-1.

Article  PubMed  Google Scholar 

Yu Y, Wang D, Liu C, Kaosaard K, Semple K, Anasetti C, et al. Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORgammat in mice. Blood. 2011;118(18):5011–20. https://doi.org/10.1182/blood-2011-03-340315.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog. 1992;3(1–2):91–115.

CAS  PubMed  Google Scholar 

Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E. Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene. 2001;20(47):6891–8. https://doi.org/10.1038/sj.onc.1204792.

Article  CAS  PubMed  Google Scholar 

Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR. NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood. 2006;107(2):827–34. https://doi.org/10.1182/blood-2005-05-1820.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I, et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA. 2004;101(21):8120–5. https://doi.org/10.1073/pnas.0401563101.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kuba A, Raida L, Mrazek F, Schneiderova P, Kriegova E, Langova K, et al. NFKB1 gene single-nucleotide polymorphisms: implications for graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2020;99(3):609–18. https://doi.org/10.1007/s00277-020-03935-5.

Article  CAS  PubMed  Google Scholar 

Lu S, Deng J, Liu H, Liu B, Yang J, Miao Y, et al. PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 2018;96(6):585–600. https://doi.org/10.1007/s00109-018-1645-6.

Article  CAS  PubMed  Google Scholar 

Reddy P. Pathophysiology of acute graft-versus-host disease. Hematol Oncol. 2003;21(4):149–61. https://doi.org/10.1002/hon.716.

Article  PubMed  Google Scholar 

Hoffmann P, Ermann J, Edinger M,

留言 (0)

沒有登入
gif