PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats

Lavie P. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ. 2000;320(7233):479–82. https://doi.org/10.1136/bmj.320.7233.479.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durán J, Esnaola S, Rubio R, Iztueta Á. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med. 2001;163(3):685–9. https://doi.org/10.1164/ajrccm.163.3.2005065.

Article  PubMed  Google Scholar 

Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157(15):1746–52.

Article  CAS  PubMed  Google Scholar 

Hou H, Zhao Y, Yu W, et al. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J Glob Health. 2018;8(1): 010405. https://doi.org/10.7189/jogh.08.010405.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

Yeghiazarians Y, Jneid H, Tietjens JR, et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;144(3). https://doi.org/10.1161/CIR.0000000000000988

Redline S, Azarbarzin A, Peker Y. Obstructive sleep apnoea heterogeneity and cardiovascular disease. Nat Rev Cardiol. 2023;20(8):560–73. https://doi.org/10.1038/s41569-023-00846-6.

Article  CAS  PubMed  Google Scholar 

Seravalle G, Grassi G. Sleep Apnea and Hypertension. High Blood Press Cardiovasc Prev. 2022;29(1):23–31. https://doi.org/10.1007/s40292-021-00484-4.

Article  PubMed  Google Scholar 

Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904. https://doi.org/10.1172/JCI118235.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lima-Junior JGA, Martins AVV, Drager LF. What is the Best Antihypertensive Treatment for OSA? Arch Bronconeumol. 2023;59(9):548–9. https://doi.org/10.1016/j.arbres.2023.03.006.

Article  PubMed  Google Scholar 

Diogo LN, Monteiro EC. The efficacy of antihypertensive drugs in chronic intermittent hypoxia conditions. Front Physiol. 2014;5. https://doi.org/10.3389/fphys.2014.00361

Pedrosa RP, Drager LF, De Paula LKG, Amaro ACS, Bortolotto LA, Lorenzi-Filho G. Effects of OSA treatment on BP in patients with resistant hypertension: a randomized trial. Chest. 2013;144(5):1487–94. https://doi.org/10.1378/chest.13-0085.

Article  CAS  PubMed  Google Scholar 

Muxfeldt ES, Margallo V, Costa LMS, et al. Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension. 2015;65(4):736–42. https://doi.org/10.1161/HYPERTENSIONAHA.114.04852.

Article  CAS  PubMed  Google Scholar 

Martínez-García MA, Capote F, Campos-Rodríguez F, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310(22):2407. https://doi.org/10.1001/jama.2013.281250.

Article  CAS  PubMed  Google Scholar 

Barbé F, Durán-Cantolla J, Capote F, et al. Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea. Am J Respir Crit Care Med. 2010;181(7):718–26. https://doi.org/10.1164/rccm.200901-0050OC.

Article  PubMed  Google Scholar 

Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol. 2022;23(11):750–70. https://doi.org/10.1038/s41580-022-00486-7.

Article  CAS  PubMed  Google Scholar 

Miyachi H. Structural Biology Inspired Development of a Series of Human Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands: From Agonist to Antagonist. Int J Mol Sci. 2023;24(4):3940. https://doi.org/10.3390/ijms24043940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res. 2021;46(11):2800–31. https://doi.org/10.1007/s11064-021-03402-1.

Article  CAS  PubMed  Google Scholar 

Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez-Pascau L, Martinell M. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate. Int J Mol Sci. 2023;24(4):3201. https://doi.org/10.3390/ijms24043201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanova EA, Parolari A, Myasoedova V, Melnichenko AA, Bobryshev YV, Orekhov AN. Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. J Cardiol. 2015;66(4):271–8. https://doi.org/10.1016/j.jjcc.2015.05.004.

Article  PubMed  Google Scholar 

Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol. 2021;20(1):109. https://doi.org/10.1186/s12933-021-01294-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang JV, Greyson CR, Schwartz GG. PPAR-γ as a therapeutic target in cardiovascular disease: evidence and uncertainty. J Lipid Res. 2012;53(9):1738–54. https://doi.org/10.1194/jlr.R024505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809–23. https://doi.org/10.1038/s41569-021-00569-6.

Article  CAS  PubMed  Google Scholar 

Füllert S, Schneider F, Haak E, et al. Effects of pioglitazone in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. J Clin Endocr Metab. 2002;87(12):5503–6 (2020071616072507200).

Article  PubMed  Google Scholar 

Komajda M, Curtis P, Hanefeld M, et al. Effect of the addition of rosiglitazone to metformin or sulfonylureas versus metformin/sulfonylurea combination therapy on ambulatory blood pressure in people with type 2 diabetes: a randomized controlled trial (the RECORD study). Cardiovasc Diabetol. 2008;7(1):10. https://doi.org/10.1186/1475-2840-7-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshii H, Onuma T, Yamazaki T, et al. Effects of pioglitazone on macrovascular events in patients with type 2 diabetes mellitus at high risk of stroke: the PROFIT-J study. J Atheroscler Thromb. 2014;21(6):563–73.

PubMed  Google Scholar 

Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89. https://doi.org/10.1016/S0140-6736(05)67528-9.

Article  CAS  PubMed  Google Scholar 

Ogihara T, Rakugi H, Ikegami H, Mikami H, Masuo K. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens. 1995;8(3):316–20. https://doi.org/10.1016/0895-7061(95)96214-5.

Article  CAS  PubMed  Google Scholar 

Gharib SA, Hayes AL, Rosen MJ, Patel SR. A Pathway-Based Analysis on the Effects of Obstructive Sleep Apnea in Modulating Visceral Fat Transcriptome. SLEEP. Published online January 1, 2013. https://doi.org/10.5665/sleep.2294

Li X, Zhang X, Hou X, et al. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis. 2023;28(3–4):432–46. https://doi.org/10.1007/s10495-022-01797-y.

Article  CAS  PubMed  Google Scholar 

Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (milano). 2021;13(11):15240–54. https://doi.org/10.18632/aging.203084.

Article  CAS  Google Scholar 

Lian N, Chen M, Zhang S, Chen L, Huang J, Lin Q. Decreased expression of PPARγ is associated with aortic endothelial cell apoptosis in intermittently hypoxic rats. Sleep Breath. 2021;25(4):2241–50. https://doi.org/10.1007/s11325-021-02319-x.

Article  PubMed  Google Scholar 

Ning-fang L, Yong-xu J, Jia C, Cai-yun W, Jie-feng H, Qi-chang L. The role of PPARγ in intermittent hypoxia-related human umbilical vein endothelial cell injury. Sleep Breath. 2023;27(3):1155–64. https://doi.org/10.1007/s11325-022-02696-x.

Article  PubMed  Google Scholar 

Tache V, Ciric A, Moretto-Zita M, et al. Hypoxia and Trophoblast Differentiation: A Key Role for PPARγ. Stem Cells Dev. 2013;22(21):2815–24. https://doi.org/10.1089/scd.2012.0596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rashid J, Alobaida A, Al-Hilal TA, et al. Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH. J Controlled Release. 2018;280:113–23. https://doi.org/10.1016/j.jconrel.2018.04.049.

Article  CAS  Google Scholar 

McGuiness JA, Scheinert RB, Asokan A, et al. Indomethacin Increases Neurogenesis across Age Groups and Improves Delayed Probe Trial Difference Scores in Middle-Aged Rats. Front Aging Neurosci. 2017;9:280. https://doi.org/10.3389/fnagi.2017.00280.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif