MYCN immunohistochemistry as surrogate marker for MYCN-amplified spinal ependymomas

Figarella-Branger D, Appay R, Metais A, Tauziède-Espariat A, Colin C, Rousseau A, Varlet P. La classification de l’OMS 2021 des tumeurs du système nerveux central [The 2021 WHO classification of tumours of the central nervous system]. Ann Pathol. 2022;42(5):367–82.

Article  PubMed  Google Scholar 

Nambirajan A, Sharma MC. Evaluation of surrogate immunohistochemical markers for molecularly defined neoplasms of the central nervous system: need of the hour. Neurol India. 2020;68(4):838–9.

Article  PubMed  Google Scholar 

Ellison DW, Figarella-Branger D. Ependymal tumours: introduction. In: WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France): International Agency for Research on Cancer; 2021. WHO classification of tumours series, 5th edn, vol 6. https://publications.iarc.fr/601. Accessed 22 Feb 2024.

Nambirajan A, Sharma MC, Gupta RK, Suri V, Singh M, Sarkar C. Study of stem cell marker nestin and its correlation with vascular endothelial growth factor and microvascular density in ependymomas. Neuropathol Appl Neurobiol. 2014;40(6):714–25.

Article  CAS  PubMed  Google Scholar 

Malgulwar PB, Sharma V, Tomar AS, Verma C, Nambirajan A, Singh M, Suri V, Sarkar C, Sharma MC. Transcriptional co-expression regulatory network analysis for Snail and Slug identifies IL1R1, an inflammatory cytokine receptor, to be preferentially expressed in ST-EPN-RELA and PF-EPN-A molecular subgroups of intracranial ependymomas. Oncotarget. 2018;9(84):35480–92.

Article  PubMed  PubMed Central  Google Scholar 

Malgulwar PB, Nambirajan A, Pathak P, Faruq M, Rajeshwari M, Singh M, Suri V, Sarkar C, Sharma MC. C11orf95-RELA fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin. J Neurooncol. 2018;138(1):29–39.

Article  CAS  PubMed  Google Scholar 

Nambirajan A, Malgulwar PB, Sharma A, Boorgula MT, Doddamani R, Singh M, Suri V, Sarkar C, Sharma MC. Clinicopathological evaluation of PD-L1 expression and cytotoxic T-lymphocyte infiltrates across intracranial molecular subgroups of ependymomas: are these tumors potential candidates for immune check-point blockade? Brain Tumor Pathol. 2019;36(4):152–61.

Article  CAS  PubMed  Google Scholar 

Nambirajan A, Sharma A, Rajeshwari M, Boorgula MT, Doddamani R, Garg A, Suri V, Sarkar C, Sharma MC. EZH2 inhibitory protein (EZHIP/Cxorf67) expression correlates strongly with H3K27me3 loss in posterior fossa ependymomas and is mutually exclusive with H3K27M mutations. Brain Tumor Pathol. 2021;38(1):30–40.

Article  CAS  PubMed  Google Scholar 

Malgulwar PB, Nambirajan A, Pathak P, Rajeshwari M, Suri V, Sarkar C, Singh M, Sharma MC. Epithelial-to-mesenchymal transition-related transcription factors are up-regulated in ependymomas and correlate with a poor prognosis. Hum Pathol. 2018;82:149–57.

Article  CAS  PubMed  Google Scholar 

Rajeshwari M, Sharma MC, Kakkar A, Nambirajan A, Suri V, Sarkar C, Singh M, Saran RK, Gupta RK. Evaluation of chromosome 1q gain in intracranial ependymomas. J Neurooncol. 2016;127(2):271–8.

Article  CAS  PubMed  Google Scholar 

Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghasemi DR, Sill M, Okonechnikov K, Korshunov A, Yip S, Schutz PW, et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 2019;138(6):1075–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khalid SI, Adogwa O, Kelly R, et al. Adult spinal ependymomas: an epidemiologic study. World Neurosurg. 2018;111:e53–61. https://doi.org/10.1016/j.wneu.2017.11.165.

Article  PubMed  Google Scholar 

Nambirajan A, Sharma A, Sharma MC. Pathology and molecular pathology of ependymoma. In: Mallick S, Giridhar P, Rath GK, editors. Evidence based practice in neuro-oncology. Springer: Singapore; 2021. p. 57–66.

Chapter  Google Scholar 

Rudà R, Reifenberger G, Frappaz D, Pfister SM, Laprie A, Santarius T, Roth P, Tonn JC, Soffietti R, Weller M, Moyal EC. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro Oncol. 2018;20(4):445–56.

Article  PubMed  Google Scholar 

Liu X, Sun B, Xu Q, et al. Outcomes in treatment for primary spinal anaplastic ependymomas: a retrospective series of 20 patients. J Neurosurg Spine. 2013;19(1):3–11.

Article  PubMed  Google Scholar 

Oh MC, Tarapore PE, Kim JM, Sun MZ, Safaee M, Kaur G, Aranda DM, Parsa AT. Spinal ependymomas: benefits of extent of resection for different histological grades. J Clin Neurosci. 2013;20(10):1390–7.

Article  PubMed  PubMed Central  Google Scholar 

Scheil S, Brüderlein S, Eicker M, Herms J, Herold-Mende C, Steiner HH, Barth TF, Möller P. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol. 2001;11(2):133–43. https://doi.org/10.1111/j.1750-3639.2001.tb00386.x.

Article  CAS  PubMed  Google Scholar 

Swanson AA, Raghunathan A, Jenkins RB, Messing-Jünger M, Pietsch T, Clarke MJ, Kaufmann TJ, Giannini C. spinal cord ependymomas with MYCN amplification show aggressive clinical behavior. J Neuropathol Exp Neurol. 2019;78(9):791–7. https://doi.org/10.1093/jnen/nlz064.

Article  PubMed  Google Scholar 

Raffeld M, Abdullaev Z, Pack SD, Xi L, Nagaraj S, Briceno N, Vera E, Pittaluga S, Lopes Abath Neto O, Quezado M, Aldape K, Armstrong TS, Gilbert MR. High level MYCN amplification and distinct methylation signature define an aggressive subtype of spinal cord ependymoma. Acta Neuropathol Commun. 2020;8(1):101. https://doi.org/10.1186/s40478-020-00973-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16(20):2699–712. https://doi.org/10.1101/gad.1021202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013;3(10): a014415. https://doi.org/10.1101/cshperspect.a014415.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaughan L, Clarke PA, Barker K, et al. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget. 2016;7(36):57525–44. https://doi.org/10.18632/oncotarget.10544.

Article  PubMed  PubMed Central  Google Scholar 

Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological role of MYCN in medulloblastoma: novel therapeutic opportunities and challenges ahead. Front Oncol. 2021;14(11):694320.

Article  Google Scholar 

Shatara M, Schieffer KM, Klawinski D, Thomas DL, Pierson CR, et al. Clinically aggressive pediatric spinal ependymoma with novel MYC amplification demonstrates molecular and histopathologic similarity to newly described MYCN-amplified spinal ependymomas. Acta Neuropathol Commun. 2021;9(1):192. https://doi.org/10.1186/s40478-021-01296-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundo L, Ambrosio MR, Raimondi F, Del Porro L, Guazzo R, Mancini V, et al. Molecular switch from MYC to MYCN expression in MYC protein negative Burkitt lymphoma cases. Blood Cancer J. 2019;9(12):91.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif