Virtual Reality and Serious Videogame-Based Instruments for Assessing Spatial Navigation in Alzheimer’s Disease: A Systematic Review of Psychometric Properties

Abma, I. L., Rovers, M., & Van Der Wees, P. J. (2016). Appraising convergent validity of patient-reported outcome measures in systematic reviews: Constructing hypotheses and interpreting outcomes. BMC Research Notes, 9(226), 1–5. https://doi.org/10.1186/s13104-016-2034-2

Article  Google Scholar 

Allison, S. L., Fagan, A. M., Morris, J. C., & Head, D. (2016). Spatial navigation in preclinical Alzheimer’s disease Samantha. Journal of Alzheimer’s Disease, 52(1), 77–90. https://doi.org/10.3233/JAD-150855

Article  PubMed  Google Scholar 

Allison, S. L., Rodebaugh, T. L., Johnston, C., Fagan, A. M., Morris, J. C., & Head, D. (2019). Developing a spatial navigation screening tool sensitive to the preclinical Alzheimer disease continuum. Archives of Clinical Neuropsychology, 34(7), 1138–1155. https://doi.org/10.1093/arclin/acz019

Article  PubMed  PubMed Central  Google Scholar 

Alsbury-Nealy, K., Wang, H., Howarth, C., Gordienko, A., Schlichting, M. L., & Duncan, K. D. (2021). OpenMaze: An open-source toolbox for creating virtual navigation experiments. Behavior Research Methods, 54(3), 1374–1387. https://doi.org/10.3758/s13428-021-01664-9

Article  PubMed  Google Scholar 

Alzheimer’s Association. (2023). 2023 Alzheimer’s disease facts and figures, 19(4), 1598–1695. https://doi.org/10.1002/alz.13016

Article  Google Scholar 

Bayahya, A. Y., Alhalabi, W., & Alamri, S. H. (2021). Smart health system to detect dementia disorders using virtual reality. Healthcare (Switzerland), 9(7), 810. https://doi.org/10.3390/healthcare9070810

Article  Google Scholar 

Bellassen, V., Iglói, K., de Souza, L. C., Dubois, B., & Rondi-Reig, L. (2012). Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis. Journal of Neuroscience, 32(6), 1942–1952. https://doi.org/10.1523/JNEUROSCI.4556-11.2012

Article  PubMed  Google Scholar 

Ben-sadoun, G., Manera, V., Alvarez, J., Sacco, G., Robert, P., Kuljiš, R. O., & García-betances, R. I. (2018). Recommendations for the design of serious games in neurodegenerative diseases. Frontiers in Aging Neuroscience, 10(February), 1–7. https://doi.org/10.3389/fnagi.2018.00013

Article  Google Scholar 

Bierbrauer, A., Kunz, L., Gomes, C. A., Luhmann, M., Deuker, L., Getzmann, S., Wascher, E., Gajewski, P. D., Hengstler, J. G., Fernandez-Alvarez, M., Atienza, M., Cammisuli, D. M., Bonatti, F., Pruneti, C., Percesepe, A., Bellaali, Y., Hanseeuw, B., Strange, B. A., Cantero, J. L., & Axmacher, N. (2020). Unmasking selective path integration deficits in Alzheimer’s disease risk carriers. Science Advances, 6(35). https://doi.org/10.1126/sciadv.aba1394

Bird, C. M., & Burgess, N. (2009). Spatial memory: Assessment in animals. In L. R. Squire (Ed.), Encyclopedia of Neuroscience (pp. 187–194). Elsevier. https://doi.org/10.1016/B978-008045046-9.00288-6

Boot, W. R. (2015). Video games as tools to achieve insight into cognitive processes. Frontiers in Psychology, 6(1), 1–3. https://doi.org/10.3389/fpsyg.2015.00003

Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L. M., Moher, D., Rennie, D., de Vet, H. C., Lijmer, J. G., & Standards for Reporting of Diagnostic Accuracy,. (2003). The STARD statement for reporting studies of diagnostic accuracy: Explanation and elaboration. Annals of Internal Medicine, 138(1), W1–W12. https://doi.org/10.7326/0003-4819-138-1-200301070-00012-w1

Article  PubMed  Google Scholar 

Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. https://doi.org/10.1016/j.tics.2006.10.005

Article  PubMed  Google Scholar 

Burgess, N., Spiers, H. J., & Paleologou, E. (2004). Orientational manoeuvres in the dark: Dissociating allocentric and egocentric influences on spatial memory. Cognition, 94(2), 149–166. https://doi.org/10.1016/j.cognition.2004.01.001

Article  PubMed  Google Scholar 

Caffò, A. O., De Caro, M. F., Picucci, L., Notarnicola, A., Settanni, A., Livrea, P., Lancioni, G. E., & Bosco, A. (2012). Reorientation deficits are associated with amnestic mild cognitive impairment. American Journal of Alzheimer’s Disease and Other Dementias, 27(5), 321–330. https://doi.org/10.1177/1533317512452035

Article  PubMed  Google Scholar 

Caffò, A. O., Lopez, A., Spano, G., Serino, S., Cipresso, P., Stasolla, F., Savino, M., Lancioni, G. E., Riva, G., & Bosco, A. (2018). Spatial reorientation decline in aging: The combination of geometry and landmarks. Aging and Mental Health, 22(10), 1372–1383. https://doi.org/10.1080/13607863.2017.1354973

Article  PubMed  Google Scholar 

Campbell, Z., Zakzanis, K. K., Jovanovski, D., Joordens, S., Mraz, R., & Graham, S. J. (2009). Utilizing virtual reality to improve the ecological validity of clinical neuropsychology: An fMRI case study elucidating the neural basis of planning by comparing the Tower of London with a three-dimensional navigation task. Applied Neuropsychology, 16(4), 295–306. https://doi.org/10.1080/09084280903297891

Article  PubMed  Google Scholar 

Carter, R., & Woldstad, J. (1985). Repeated measurements of spatial ability with the Manikin test. HUMAN FACTORS, 27(2), 209–219. https://doi.org/10.1177/001872088502700208

Article  PubMed  Google Scholar 

Castegnaro, A., Howett, D., Li, A., Harding, E., Chan, D., Burgess, N., & King, J. (2022). Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus, 32(9), 660–678. https://doi.org/10.1002/hipo.23458

Article  PubMed  PubMed Central  Google Scholar 

Chan, J. Y. C., Yau, S. T. Y., Kwok, T. C. Y., & Tsoi, K. K. F. (2021). Diagnostic performance of digital cognitive tests for the identification of MCI and dementia: A systematic review. Ageing Research Reviews, 72, 101506. https://doi.org/10.1016/j.arr.2021.101506

Article  PubMed  Google Scholar 

Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2018.02086

Article  PubMed  PubMed Central  Google Scholar 

Cogné, M., Taillade, M., N’Kaoua, B., Tarruella, A., Klinger, E., Larrue, F., Sauzéon, H., Joseph, P. A., & Sorita, E. (2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Annals of Physical and Rehabilitation Medicine, 60(3), 164–176. https://doi.org/10.1016/j.rehab.2015.12.004

Article  PubMed  Google Scholar 

Colmant, L., Bierbrauer, A., Bellaali, Y., Kunz, L., Van Dongen, J., Sleegers, K., Axmacher, N., Lefèvre, P., & Hanseeuw, B. (2023). Dissociating effects of aging and genetic risk of sporadic Alzheimer’s disease on path integration. Neurobiology of Aging, 131, 170–181. https://doi.org/10.1016/j.neurobiolaging.2023.07.025

Article  PubMed  Google Scholar 

Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 80, 605–621. https://doi.org/10.1016/j.neubiorev.2017.07.012

Article  PubMed  Google Scholar 

Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A. M., Spiers, H., & Hornberger, M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9285–9292. https://doi.org/10.1073/pnas.1901600116

Article  ADS  PubMed  PubMed Central  Google Scholar 

Coughlan, G., Laczó, J., Hort, J., Minihane, A. M., & Hornberger, M. (2018). Spatial navigation deficits — Overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496–506. https://doi.org/10.1038/s41582-018-0031-x

Article  PubMed  Google Scholar 

Coughlan, G., Puthusseryppady, V., Lowry, E., Gillings, R., Spiers, H., Minihane, A. M., & Hornberger, M. (2020). Test-retest reliability of spatial navigation in adults at-risk of Alzheimer’s disease. PLoS ONE, 15(9), e0239077. https://doi.org/10.1371/journal.pone.0239077

Article  PubMed  PubMed Central  Google Scholar 

Coutrot, A., Silva, R., Manley, E., de Cothi, W., Sami, S., Bohbot, V. D., Wiener, J. M., Hölscher, C., Dalton, R. C., Hornberger, M., & Spiers, H. J. (2018). Global determinants of navigation ability. Current Biology, 28(17), 2861-2866.e4. https://doi.org/10.1016/j.cub.2018.06.009

Article  PubMed  Google Scholar 

Da Costa, R. Q. M., Pompeu, J. E., Moretto, E., Silva, J. M., Dos Santos, M. D., Nitrini, R., & Brucki, S. M. D. (2022). Two immersive virtual reality tasks for the assessment of spatial orientation in older adults with and without cognitive impairment: Concurrent validity, group comparison, and accuracy results. Journal of the International Neuropsychological Society, 28(5), 460–472. https://doi.org/10.1017/S1355617721000655

Article  PubMed  Google Scholar 

Davis, R., & Sikorskii, A. (2020). Eye tracking analysis of visual cues during wayfinding in early stage Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 49(1), 91–97. https://doi.org/10.1159/000506859

Article  PubMed  Google Scholar 

delCacho-Tena, A., Christ, B. R., Arango-Lasprilla, J. C., Perrin, P. B., Rivera, D., & Olabarrieta-Landa, L. (2023). Normative data estimation in neuropsychological tests: A systematic review. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 00, 1–16. https://doi.org/10.1093/arclin/acad084

Article  Google Scholar 

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining “gamification.” Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek 2011, 9–15. https://doi.org/10.1145/2181037.2181040

Diersch, N., & Wolbers, T. (2019). The potential of virtual reality for spatial navigation research across the adult lifespan. Journal of Experimental Biology, 222(Suppl_1). https://doi.org/10.1242/jeb.187252

Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83(4), 764–770. https://doi.org/10.1016/j.neuron.2014.07.032

Article  PubMed  PubMed Central  Google Scholar 

Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504–1513. https://doi.org/10.1038/nn.4656

Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Baizan, C., Arias, J. L., & Mendez, M. (2020a). Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance. Behavioural Brain Research, 388, 112646. https://doi.org/10.1016/j.bbr.2020.112646

Article  PubMed  Google Scholar 

Fernandez-Baizan, C., Diaz-Caceres, E., Arias, J. L., & Mendez, M. (2019). Egocentric and allocentric spatial memory in healthy aging: Performance on real-world tasks. Brazilian Journal of Medical and Biological Research, 52(4), 1–7. https://doi.org/10.1590/1414-431x20198041

Article  Google Scholar 

Fernandez-Baizan, C., Nuñez, P., Arias, J. L., & Mendez, M. (2020b). Egocentric and allocentric spatial memory in typically developed children: Is spatial memory associated with visuospatial skills, behavior, and cortisol? Brain and Behavior, 10(5), 1–14. https://doi.org/10.1002/brb3.1532

Article 

留言 (0)

沒有登入
gif