Abramoff, B. A., Dillingham, T. R., Brown, L. A., Caldera, F., Caldwell, K. M., McLarney, M., & Pezzin, L. E. (2023). Psychological and cognitive functioning among patients receiving outpatient rehabilitation for post-COVID sequelae: An observational study. Archives of Physical Medicine and Rehabilitation, 104(1), 11–17.
Al-Aly, Z., Xie, Y., & Bowe, B. (2021). High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594(7862), 259–264. https://doi.org/10.1038/s41586-021-03553-9
Article CAS PubMed Google Scholar
Albu, S., Zozaya, N. R., Murillo, N., García-Molina, A., Chacón, C. A. F., & Kumru, H. (2021). What’s going on following acute COVID-19? Clinical characteristics of patients in an out-patient rehabilitation program. NeuroRehabilitation, 48(4), 469–480. https://doi.org/10.3233/NRE-210025
Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J., & Krupinski, J. (2020). Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, Behavior, & Immunity - Health, 9, 100163. https://doi.org/10.1016/j.bbih.2020.100163
Amalakanti, S., Arepalli, K. V. R., & Jillella, J. P. (2021). Cognitive assessment in asymptomatic COVID-19 subjects. VirusDisease, 32(1), 146–149. https://doi.org/10.1007/s13337-021-00663-w
Article CAS PubMed PubMed Central Google Scholar
Apple, A. C., Oddi, A., Peluso, M. J., Asken, B. M., Henrich, T. J., Kelly, J. D., Pleasure, S. J., Deeks, S. G., Allen, I. E., Martin, J. N., Ndhlovu, L. C., Miller, B. L., Stephens, M. L., & Hellmuth, J. (2022). Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Annals of Clinical and Translational Neurology, 9(2), 221–226. https://doi.org/10.1002/acn3.51498
Article CAS PubMed PubMed Central Google Scholar
Arashiro, T., Arima, Y., Muraoka, H., Sato, A., Oba, K., Uehara, Y., & Suzuki, M. (2023). Coronavirus disease 19 (COVID-19) vaccine effectiveness against symptomatic severe acute respiratory syndrome Coronavirus2 (SARS-CoV-2) infection during delta-dominant and omicron-dominant periods in Japan: A multicenter prospective case-control study (Factors associated with SARS-CoV-2 infection and the effectiveness ofCOVID-19 vaccines study). Clinical Infectious Diseases, 76(3), e108–e115.
Article CAS PubMed Google Scholar
Ariza, M., Cano, N., Segura, B., Adan, A., Bargalló, N., Caldú, X., & Junqué, C. (2023). COVID-19 severity is related to poor executive function in people with post-COVID conditions. Journal of Neurology, 1–17.
Baker, J. F., Cates, M. E., & Luthin, D. R. (2017). D-cycloserine in the treatment of posttraumatic stress disorder. Mental Health Clinician, 7(2), 88–94. https://doi.org/10.9740/mhc.2017.03.088
Baumeister, A., Göritz, A. S., Benoy, C., Jelinek, L., & Moritz, S. (2022). Long-COVID or long before? Neurocognitive deficits in people with COVID-19. Psychiatry Research, 317, 114822.
Article PubMed PubMed Central Google Scholar
Becker, J. H., Lin, J. J., Doernberg, M., Stone, K., Navis, A., Festa, J. R., & Wisnivesky, J. P. (2021). Assessment of cognitive function in patients after COVID-19 infection. JAMA Network Open, 4(10), e2130645. https://doi.org/10.1001/jamanetworkopen.2021.30645
Article PubMed PubMed Central Google Scholar
Benros, M. E., Eaton, W. W., & Mortensen, P. B. (2014). The epidemiologic evidence linking autoimmune diseases and psychosis. Biological Psychiatry, 75(4), 300–306.
Birberg Thornberg, U., Andersson, A., Lindh, M., Hellgren, L., Divanoglou, A., & Levi, R. (2022). Neurocognitive deficits in COVID-19 patients five months after discharge from hospital. NeuropsychologicalRehabilitation, 1–25.
Bispo, D. D. D. C., Brandao, P. R. D. P., Pereira, D. A., Maluf, F. B., Dias, B. A., Paranhos, H. R., & Descoteaux, M. (2022). Brain microstructural changes and fatigue after COVID-19. medRxiv, 2022–08.
Bogolepova, A. N., Osinovskaya, N. A., Kovalenko, E. A., & Makhnovich, E. (2021). Fatigue and cognitive impairment in post-COVID syndrome: Possible treatment approaches. Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 13(4), 88–93.
Bohmwald, K., Gálvez, N. M. S., Ríos, M., & Kalergis, A. M. (2018). Neurologic alterations due to respiratory virus infections. Frontiers in Cellular Neuroscience, 12, 386. https://doi.org/10.3389/fncel.2018.00386
Article CAS PubMed PubMed Central Google Scholar
Bottemanne, H., Gouraud, C., Hulot, J.-S., Blanchard, A., Ranque, B., Lahlou-Laforêt, K., Limosin, F., Günther, S., Lebeaux, D., & Lemogne, C. (2021). Do anxiety and depression predict persistent physical symptoms after a severe COVID-19 episode? A Prospective Study. Frontiers in Psychiatry, 12, 757685. https://doi.org/10.3389/fpsyt.2021.757685
Braga, L. W., Oliveira, S. B., Moreira, A. S., Pereira, M. E., Carneiro, Serio, A. S., & Souza, L. M. N. (2022). Neuropsychological manifestations of long COVID in hospitalized and non-hospitalized Brazilian Patients. NeuroRehabilitation, 50(4), 391–400.
Article CAS PubMed Google Scholar
Bungenberg, J., Humkamp, K., Hohenfeld, C., Rust, M. I., Ermis, U., Dreher, M., Hartmann, N. K., Marx, G., Binkofski, F., Finke, C., Schulz, J. B., Costa, A. S., & Reetz, K. (2022). Long COVID-19: Objectifying most self-reported neurological symptoms. Annals of Clinical and Translational Neurology, 9(2), 141–154. https://doi.org/10.1002/acn3.51496
Article CAS PubMed PubMed Central Google Scholar
Cattie, J. E., Letendre, S. L., Woods, S. P., Barakat, F., Perry, W., Cherner, M., Umlauf, A., Franklin, D., Heaton, R. K., Hassanein, T., Grant, I., & Translational Methamphetamine AIDS Research Center (TMARC). (2014). Persistent neurocognitive decline in a clinic sample of hepatitis C virus-infected persons receiving interferon and ribavirin treatment. Journal of neurovirology, 20(6), 561–570.
Article CAS PubMed PubMed Central Google Scholar
Chang, J. G., Ha, E. H., Lee, W., & Lee, S. Y. (2022). Cognitive impairments in patients with subacute coronavirus disease: Initial experiences in a post-coronavirus disease clinic. Frontiers in Aging Neuroscience, 14.
Christensen, P. A., Olsen, R. J., Long, S. W., Snehal, R., Davis, J. J., Ojeda Saavedra, M., Reppond, K., Shyer, M. N., Cambric, J., Gadd, R., Thakur, R. M., Batajoo, A., Mangham, R., Pena, S., Trinh, T., Kinskey, J. C., Williams, G., Olson, R., Gollihar, J., & Musser, J. M. (2022). Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with coronavirus disease 2019 caused by the omicron variant of severe acute respiratory syndrome coronavirus 2 in Houston. Texas. the American Journal of Pathology, 192(4), 642–652. https://doi.org/10.1016/j.ajpath.2022.01.007
Article CAS PubMed Google Scholar
Cian, V., De Laurenzis, A., Siri, C., Gusmeroli, A., & Canesi, M. (2022). Cognitive and neuropsychiatric features of COVID-19 patients after hospital dismission: An Italian Sample. Frontiers in Psychology, 13.
Cockshell, S. J., & Mathias, J. L. (2014). Cognitive functioning in people with chronic fatigue syndrome: A comparison between subjective and objective measures. Neuropsychology, 28(3), 394–405. https://doi.org/10.1037/neu0000025
Cohen, J. (2013). Statistical power analysis for the behavioral sciences (0 ed.). Routledge. https://doi.org/10.4324/9780203771587
Crivelli, L., Calandri, I., Corvalán, N., Carello, M. A., Keller, G., Martínez, C., Arruabarrena, M., & Allegri, R. (2021). Cognitive consequences of COVID-19: Results of a cohort study from South America. Arquivos De Neuro-Psiquiatria. https://doi.org/10.1590/0004-282x-anp-2021-0320
Article PubMed Central Google Scholar
Crivelli, L., Palmer, K., Calandri, I., Guekht, A., Beghi, E., Carroll, W., Frontera, J., García-Azorín, D., Westenberg, E., Winkler, A. S., Mangialasche, F., Allegri, R. F., & Kivipelto, M. (2022). Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s & Dementia : THe Journalof the Alzheimer’s Association, 18(5), 1047–1066. https://doi.org/10.1002/alz.12644
Crumley, J. J., Stetler, C. A., & Horhota, M. (2014). Examining the relationship between subjective and objective memory performance in older adults: A meta-analysis. Psychology and Aging, 29(2), 250–263. https://doi.org/10.1037/a0035908
Cucchiara, B. L., Koralnik, I. J. (2022) UpToDate. Waltham, MA: UpToDate; [ Jul; 2022 ]. COVID-19: Neurologic complications and management of neurologic conditions.
Davis, H. E., McCorkell, L., Vogel, J. M., et al. (2023). Long COVID: Major findings, mechanisms and recommendations. Nature Reviews Microbiology, 21, 133–146. https://doi.org/10.1038/s41579-022-00846-2
Article CAS PubMed PubMed Central Google Scholar
Degarege, A., Naveed, Z., Kabayundo, J., & Brett-Major, D. (2022). Heterogeneity and risk of bias in studies examining risk factors for severe illness and death in COVID-19: A systematic review and meta analysis. Pathogens (basel, Switzerland), 11(5), 563. https://doi.org/10.3390/pathogens11050563
Article CAS PubMed Google Scholar
De Paula, J. J., Paiva, R. E., Souza-Silva, N. G., Rosa, D. V., Duran, F. L. D. S., Coimbra, R. S., & Romano Silva, M. A. (2023). Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Molecular Psychiatry, 28(2), 553. 563.
Article CAS PubMed Google Scholar
Del Brutto, O. H., Rumbea, D. A., Recalde, B. Y., & Mera, R. M. (2022). Cognitive sequelae of long COVID may not be permanent: A prospective study. European Journal of Neurology, 29(4), 1218–1221. https://doi.org/10.1111/ene.15215
留言 (0)