Moexipril Improves Renal Ischemia/Reperfusion Injury in Adult Male Rats

Hoste, E.A., et al., Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology, 2018. 14(10): p. 607-625.

Makris, K. and L. Spanou, Acute kidney injury: definition, pathophysiology and clinical phenotypes. The clinical biochemist reviews, 2016. 37(2): p. 85.

El-Mokadem, B.M., et al., Epac-1/Rap-1 signaling pathway orchestrates the reno-therapeutic effect of ticagrelor against renal ischemia/reperfusion model. Biomedicine & Pharmacotherapy, 2021. 139: p. 111488.

Wu, M.-Y., et al., Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry, 2018. 46(4): p. 1650-1667.

Garcia, I., et al., Oxidative insults disrupt OPA1-mediated mitochondrial dynamics in cultured mammalian cells. Redox Report, 2018. 23(1): p. 160-167.

Yu, W., et al., Mst1 promotes cardiac ischemia–reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. The Journal of Physiological Sciences, 2019. 69: p. 113-127.

Bonventre, J.V. and L. Yang, Cellular pathophysiology of ischemic acute kidney injury. The Journal of clinical investigation, 2011. 121(11): p. 4210-4221.

Han, S.J. and H.T. Lee, Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney research and clinical practice, 2019. 38(4): p. 427.

Xu, W., et al., Bax-PGAM5L-Drp1 complex is required for intrinsic apoptosis execution. Oncotarget, 2015. 6(30): p. 30017.

Belal, F., et al., Development of membrane electrodes for the specific determination of moexipril hydrochloride in dosage forms and biological fluids. Portugaliae Electrochimica Acta, 2009. 27(4): p. 463-475.

Pines, A. and E.Z. Fisman, ACE inhibition with moexipril: a review of potential effects beyond blood pressure control. American Journal of Cardiovascular Drugs, 2003. 3: p. 351-360.

Torsello, A., et al., Moexipril and quinapril inhibition of tissue angiotensin-converting enzyme activity in the rat: evidence for direct effects in heart, lung and kidney and stimulation of prostacyclin generation. Journal of endocrinological investigation, 2003. 26: p. 79-83.

Brown, N.J., Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nature Reviews Nephrology, 2013. 9(8): p. 459-469.

Anderson, B., et al., Anti-free radical mechanisms in captopril protection against reperfusion injury in isolated rat hearts. The Canadian journal of cardiology, 1996. 12(10): p. 1099-1104.

Ravati, A., et al., Enalapril and moexipril protect from free radical-induced neuronal damage in vitro and reduce ischemic brain injury in mice and rats. European journal of pharmacology, 1999. 373(1): p. 21-33.

Tekin, S., et al., Protective effect of saxagliptin against renal ischaemia reperfusion injury in rats. Archives of Physiology and Biochemistry, 2022. 128(3): p. 608-618.

Hesketh, E.E., et al., Renal ischaemia reperfusion injury: a mouse model of injury and regeneration. JoVE (Journal of Visualized Experiments), 2014(88): p. e51816.

Zhang, J., et al., The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Renal Failure, 2018. 40(1): p. 680-686.

Dong, Y., et al., Ischemic duration and frequency determines AKI-to-CKD progression monitored by dynamic changes of tubular biomarkers in IRI mice. Frontiers in Physiology, 2019. 10: p. 153.

Taheran, E., V. Mohammadi, and R. Mohammadi, Protective Effect of Pyrroloquinoline Quinone (PQQ) against Renal Ischemia-Reperfusion Injury in Rat. Iranian Journal of Veterinary Surgery, 2023: p. 113-119.

Long, J., et al., Macelignan protects against renal ischemia-reperfusion injury via inhibition of inflammation and apoptosis of renal epithelial cells. Cellular and Molecular Biology, 2020. 66(1): p. 55-59.

Ronco, C., R. Bellomo, and J.A.J.T.L. Kellum, Acute kidney injury. 2019. 394(10212): p. 1949-1964.

Al-Shibani, B. I. M., Kahaleq, M. A. A., Abosaooda, M., Mosa, A. K., Abdulhussein, M. A., & Hadi, N. R. (2020). Potential Nephroprotective

Effect of Valsartan in Renal Ischemia Reperfusion Injury Role of NFKBP65 Pathway in Rat. International Journal of Pharmaceutical Research

(09752366), 12(1). p. 928–936.

Hasanein, P., Rahdar, A., Barani, M., Baino, F., & Yari, S. (2021). Oil-inwater microemulsion encapsulation of antagonist drugs prevents renal ischemia-reperfusion injury in rats. Applied Sciences, 11(3), 1264.

Nedogoda, S., E. Buvailik, and V. Zhelezkin, Antioxidant action of moexipril in postmenopausal women with arterial hypertension. American Journal of Hypertension, 1999. 12(S4): p. 136-136.

Abbas, W., Altemimi, M., Qassam, H., Hameed, A. A., Zigam, Q., Abbas, L., ...& Hadi, N. (2022). Fimasartan ameliorates renal ischemia reperfusion injury via modulation of oxidative stress, inflammatory and apoptotic cascades in a rat model. Journal of Medicine and Life, 15(2), 241–251.

Alawadi, M.F., et al., Nephroprotective potential effect of U-50488H in renal ischemia reperfusion injury in adults Males rats’ model: Role of NRF2 pathway. International Journal of Pharmaceutical Research, 2020. 12(2).

留言 (0)

沒有登入
gif