Sphingomicrobium clamense sp. nov., Isolated from Sediment of Clam Island Beach in China

Kämpfer P, Arun AB, Young CC, Busse HJ, Kassmannhuber J, Rosselló-Móra R, Geueke B, Rekha PD, Chen WM (2012) Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. Int J Syst Evol Microbiol 62:1326–1330. https://doi.org/10.1099/ijs.0.034413-0

Article  CAS  PubMed  Google Scholar 

Shahina M, Hameed A, Lin SY, Hsu YH, Liu YC, Cheng IC, Lee MR, Lai WA, Lee RJ, Young CC (2013) Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:3415–3422. https://doi.org/10.1099/ijs.0.047704-0

Article  CAS  PubMed  Google Scholar 

Shahina M, Hameed A, Lin SY, Hsu YH, Liu YC, Huang YM, Lin JC, Young CC (2013) Sphingomicrobium marinum sp. nov. and Sphingomicrobium flavum sp. nov., isolated from surface seawater, and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:4469–4476. https://doi.org/10.1099/ijs.0.052837-0

Article  CAS  PubMed  Google Scholar 

Park S, Park JM, Sun Joo E, Won SM, Kyum Kim M, Yoon JH (2015) Sphingomicrobium aestuariivivum sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 65:2678–2683. https://doi.org/10.1099/ijs.0.000320

Article  CAS  PubMed  Google Scholar 

You H, Xu L, Kong YH, Sun C, Zhou P, Xu XW (2022) Sphingomicrobium nitratireducens sp. nov., isolated from a tidal flat in Guangxi. Arch Microbiol 204:671–678. https://doi.org/10.1007/s00203-022-03273-2

Article  CAS  PubMed  Google Scholar 

Kim CH, Yoo Y, Khim JS, Xu X, Kim B, Choi IG, Kim JJ (2023) Sphingomicrobium sediminis sp. nov., isolated from marine sediment in the Republic of Korea. Int J Syst Evol Microbiol 73. https://doi.org/10.1099/ijsem.0.005847

Zhang Q, Kanjanasuntree R, Kim JH, Yoon JH, Sukhoom A, Kantachote D, Kim W (2018) Sphingomicrobium arenosum sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 68:2551–2556. https://doi.org/10.1099/ijsem.0.002875

Article  CAS  PubMed  Google Scholar 

Felföldi T, Somogyi B, Marialigeti K, Vörös L (2009) Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J Limnol 68:385–395. https://doi.org/10.4081/jlimnol.2009.385

Article  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  CAS  PubMed  Google Scholar 

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

Article  ADS  CAS  PubMed  Google Scholar 

Rzhetsky A, Nei M (1992) Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35:367–375. https://doi.org/10.1007/bf00161174

Article  ADS  CAS  PubMed  Google Scholar 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Article  PubMed  Google Scholar 

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581

Article  ADS  CAS  PubMed  Google Scholar 

Schubert M, Lindgreen S, Orlando L (2016) AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88–94. https://doi.org/10.1186/s13104-016-1900-2

Article  PubMed  PubMed Central  Google Scholar 

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18–23. https://doi.org/10.1186/2047-217x-1-18

Article  PubMed  PubMed Central  Google Scholar 

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75–89. https://doi.org/10.1186/1471-2164-9-75

Article  CAS  Google Scholar 

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–185. https://doi.org/10.1093/nar/gkm321

Article  PubMed  PubMed Central  Google Scholar 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

Article  CAS  PubMed  Google Scholar 

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

Article  CAS  PubMed  Google Scholar 

Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:1–14. https://doi.org/10.1186/1471-2105-14-60

Article  Google Scholar 

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. https://doi.org/10.1093/nar/gkab902

Article  CAS  PubMed  Google Scholar 

Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Anton Leeuw Int J G 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

Article  CAS  Google Scholar 

Dong X, Cai M (2001) Determinative manual for routine bacteriology (English translation). Scientific, Beijing

Google Scholar 

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. (MIDI Technical note 101. MIDI), Newark, DE

Google Scholar 

Tindall B (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X

Article  CAS  Google Scholar 

Kates M (1986) Lipid extraction procedures. Techniques of lipidology: isolation, analysis and identification of lipids.:106–107

Busse J, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8. https://doi.org/10.1016/S0723-2020(88)80040-7

Article  CAS  Google Scholar 

Busse H-J, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 47:698–708. https://doi.org/10.1099/00207713-47-3-698

Article  CAS  Google Scholar 

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

Article  CAS  PubMed  Google Scholar 

Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131.

留言 (0)

沒有登入
gif