Exploring the Hot Springs of Golan: A Source of Thermophilic Bacteria and Enzymes with Industrial Promise

Kuddus M, Bano N (2022) Microbial screening for extremozymes. In: Microbial extremozymes, Elsevier, Amsterdam, pp 1–7. https://doi.org/10.1016/B978-0-12-822945-3.00006-3

Ghosh S, Lepcha K, Basak A, Mahanty AK (2020) Thermophiles and thermophilic hydrolases. In: Physiological and biotechnological aspects of extremophiles. Elsevier, Amsterdam, pp 219–236. https://doi.org/10.1016/B978-0-12-818322-9.00016-2

Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK (2019) Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresour Technol 278:372–382. https://doi.org/10.1016/j.biortech.2019.01.088

Article  CAS  PubMed  Google Scholar 

Nadaroglu H, Polat MS (2022) Microbial extremozymes: Novel sources and industrial applications. In: Microbial extremozymes. Elsevier, Amsterdam, pp 67–88. https://doi.org/10.1016/B978-0-12-822945-3.00019-1

Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calvino A, Rivas F (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28(5):2249–2256. https://doi.org/10.1007/s11274-012-1032-3

Article  CAS  PubMed  Google Scholar 

Soy S, Nigam VK, Sharma SR (2019) Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 44(5):1–12. https://doi.org/10.1007/s12038-019-9938-7

Article  CAS  Google Scholar 

Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A (2017) Strategies for design of improved biocatalysts for industrial applications. Bioresour Technol 245:1304–1313. https://doi.org/10.1016/j.biortech.2017.05.031

Article  CAS  PubMed  Google Scholar 

Hosseini SM, Aziz HA (2013) Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement. Bioresour Technol 133:240–247. https://doi.org/10.1016/j.biortech.2013.01.098

Article  CAS  PubMed  Google Scholar 

Tanyildizi MS, Elibol M, Özer D (2006) Optimization of growth medium for the production of α-amylase from Bacillus amyloliquefaciens using response surface methodology. J Chem Technol Biotechnol 81(4):618–622. https://doi.org/10.1002/jctb.1445

Article  CAS  Google Scholar 

Naili B, Sahnoun M, Bejar S, Kammoun R (2016) Optimization of submerged Aspergillus oryzae S2 α-amylase production. Food Sci Biotechnol 25(1):185–192. https://doi.org/10.1007/s10068-016-0028-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohra V, Tikariha H, Dafale NA (2019) Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Appl Biochem Biotechnol 187:266–281. https://doi.org/10.1007/s12010-018-2820-5

Article  CAS  PubMed  Google Scholar 

Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon J-P, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094. https://doi.org/10.1073/pnas.92.15.7090

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965. https://doi.org/10.3390/md13041925

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harley JP, Prescott LM (2002) Laboratory exercises in microbiology. McGraw-Hill, New York

Google Scholar 

Caglayan P, Birbir M, Sánchez-Porro C, Ventosa A (2017) Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheep skins of diverse origin. J Am Leather Chem Assco 112:207–216

CAS  Google Scholar 

Johnson TR (2004) Laboratory experiments in microbiology. Benjamin/Cummings, Redwood City

Google Scholar 

Harley JP, Prescott LM (1996) Laboratory exercises in microbiology. WCB/ McGraw-Hill, Boston

Google Scholar 

Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S (2018) Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem 77:494–506. https://doi.org/10.1016/j.bioorg.2018.02.014

Article  CAS  PubMed  Google Scholar 

Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57(5):503–507. https://doi.org/10.1007/s00284-008-9276-8

Article  CAS  PubMed  Google Scholar 

Meddeb-Mouelhi F, Moisan JK, Beauregard M (2014) A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme Microb Technol 66:16–19. https://doi.org/10.1016/j.enzmictec.2014.07.004

Article  CAS  PubMed  Google Scholar 

Nagar S, Mittal A, Gupta VK (2012) A cost effective method for screening and isolation of xylan degrading bacteria using agro waste material. Asian J Biol Sci 5:384–394. https://doi.org/10.3923/ajbs.2012

Article  Google Scholar 

Gazali FM, Ananda M, Suwastika IN (2018) Characterization of α-amylase activity from thermophilic bacteria isolated from Bora Hot spring, Central Sulawesi. Nat Sci J Sci Technol. https://doi.org/10.22487/25411969.2018.v7.i1.9923

Article  Google Scholar 

Cordeiro CAM, Martins MLL, Luciano AB, Silva RFd (2002) Production and properties of Xylanase from thermophilic Bacillus sp. Braz Arch Biol Technol 45:413–418. https://doi.org/10.1590/S1516-89132002000600002

Article  CAS  Google Scholar 

Jamilah I, Meryandini A, Rusmana I, Suwanto A, Mubarik NR (2009) Activity of proteolytic and amylolytic enzymes from Bacillus spp. isolated from shrimp ponds. Microbiol Indones 3(2):4–4. https://doi.org/10.5454/mi.3.2.4

Article  Google Scholar 

Adesina F, Onilude A (2013) Isolation, identification and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. Afr J Agric Res 8:4414–4421. https://doi.org/10.5897/AJAR2013.6993

Article  CAS  Google Scholar 

Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11(1):1–6. https://doi.org/10.1186/s13104-018-3558-4

Article  CAS  Google Scholar 

Bernfeld B (1955) Amylases α and α. Methods Enzymol 1:149–158

Article  CAS  Google Scholar 

Classics Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

Article  Google Scholar 

Gazali F, Suwastika I (2018) Thermostable. J Phys Conf Ser 979:012001

Article  Google Scholar 

Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York

Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547. https://doi.org/10.1093/molbev/msy096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic–solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15(1):1–12. https://doi.org/10.1186/s12896-015-0129-9

Article  CAS  Google Scholar 

Brock TD (2012) Thermophilic microorganisms and life at high temperatures. Springer, New York

Google Scholar 

Inan K, Canakci S, Beldüz AO (2011) Isolation and characterization of xylanolytic new strains of Anoxybacillus from some hot springs in Turkey. Turk J Biol 35:529–542. https://doi.org/10.3906/biy-1003-75

Article  CAS  Google Scholar 

Narayan VV, Hatha MA, Morgan HW, Rao D (2008) Isolation and characterization of aerobic thermophilic bacteria from the Savusavu hot springs in Fiji. Microbes Environ 23(4):350–352. https://doi.org/10.1264/jsme2.ME08105

Article  PubMed  Google Scholar 

Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol. https://doi.org/10.1155/2017/6943952

Article  PubMed  PubMed Central  Google Scholar 

Masi C, Tebiso A, Kumar KS (2023) Isolation and characterization of potential multiple extracellular enzyme-producing bacteria from waste dumping area in Addis Ababa. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e12645

Article  PubMed  PubMed Central  Google Scholar 

Cavello I, Urbieta MS, Segretin AB, Giaveno A, Cavalitto S, Donati ER (2018) Assessment of keratinase and other hydrolytic enzymes in thermophilic bacteria isolated from geothermal areas in Patagonia Argentina. Geomicrobiol J 35:156–165. https://doi.org/10.1080/01490451.2017.1339144

Article  CAS  Google Scholar 

Mohamed SA, Al-Malki AL, Kumosani TA (2009) Partial purification and characterization of five α-amylases from a wheat local variety (Balady) during germination. Aust J Basic Appl Sci 3:1740–1748

CAS  Google Scholar 

Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T (1998) Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl Environ Microbiol 64(9):3282–3289. https://doi.org/10.1128/AEM.64.9.3282-3289.1998

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Parmar D, Pandya A (2012) Characterization of amylase producing bacterial isolates. Bull Environ Pharmacol Life Sci 1(6):42–47

留言 (0)

沒有登入
gif