Floating electrode–dielectric barrier discharge-based plasma promotes skin regeneration in a full-thickness skin defect mouse model

Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:344–65. https://doi.org/10.1016/j.addr.2018.06.019.

Article  CAS  PubMed  Google Scholar 

Lee CR, Lee YJ, Kwon BY, Lee SJ, Ryu YH, Rhie JW, et al. Vessel-derived decellularized extracellular matrices (VdECM): novel bio-engineered materials for the Wound Healing. Tissue Eng Regen Med. 2023;20:59–67. https://doi.org/10.1007/s13770-022-00511-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706. https://doi.org/10.1152/physrev.00067.2017.

Article  CAS  PubMed  Google Scholar 

Gan J, Liu C, Li H, Wang S, Wang Z, Kang Z, et al. Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials. 2019;219:119340. https://doi.org/10.1016/j.biomaterials.2019.119340.

Article  CAS  PubMed  Google Scholar 

Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther. 2022;7(9):2891–908. https://doi.org/10.1016/j.ymthe.2022.07.016.

Article  CAS  Google Scholar 

DiPietro LA, Wilgus TA, Koh TJ. Macrophages in healing wounds: paradoxes and paradigms. Int J Mol Sci. 2021;22:950. https://doi.org/10.3390/ijms22020950.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moon S, Hong J, Go S, Kim BS. Immunomodulation for tissue repair and regeneration. Tissue Eng Regen Med. 2023;20:389–409. https://doi.org/10.1007/s13770-023-00525-0.

Article  CAS  PubMed  Google Scholar 

Fan MH, Zhu Q, Li HH, Ra HJ, Majumdar S, Gulick DL, et al. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J Biol Chem. 2016;291:8070–89. https://doi.org/10.1074/jbc.M115.701433.

Article  CAS  PubMed  Google Scholar 

Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Exp Rev Mol Med. 2011;13:e23. https://doi.org/10.1017/S1462399411001943.

Article  Google Scholar 

Pyung YJ, Park DJ, Kim CG, Yun CH. Remodeling and restraining lung tissue damage through the regulation of respiratory immune responses. Tissue Eng Regen Med. 2023. https://doi.org/10.1007/s13770-022-00516-7.

Article  PubMed  PubMed Central  Google Scholar 

Field CK, Kerstein MD. Overview of wound healing in a moist environment. Am J Surg. 1994. https://doi.org/10.1016/0002-9610(94)90002-7.

Article  PubMed  Google Scholar 

Al Sadoun H. Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions. Cells. 2022;11:2430. https://doi.org/10.3390/cells11152430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng X, Feng W, Ji Y, Jin T, Li J, Guo J. Transforming growth factor-β1 negatively regulates SOCS7 via EGR1 during wound healing. Cell Comm Signal. 2022;20:1–12. https://doi.org/10.1186/s12964-022-00893-5.

Article  CAS  Google Scholar 

Dube CT, Ong YHB, Wemyss K, Krishnan S, Tan TJ, Janela B, et al. Age-related alterations in macrophage distribution and function are associated with delayed cutaneous wound healing. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.943159.

Article  PubMed  PubMed Central  Google Scholar 

Kuninaka Y, Ishida Y, Ishigami A, Nosaka M, Matsuki J, Yasuda H, et al. Macrophage polarity and wound age determination. Sci Rep. 2022;12:20327. https://doi.org/10.1038/s41598-022-24577-9.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Braný D, Dvorská D, Halašová E, Škovierová H. Cold atmospheric plasma: a powerful tool for modern medicine. Int J Mol Sci. 2020;21:2932. https://doi.org/10.3390/ijms21082932.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernhardt T, Semmler ML, Schäfer M, Bekeschus S, Emmert S, Boeckmann L. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology. Oxi Med Cell Longev. 2019. https://doi.org/10.1155/2019/3873928.

Article  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CTmethod. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

Article  CAS  PubMed  Google Scholar 

Farhan M, Silva M, Xingan X, Zhou Z, Zheng W. Artemisinin inhibits the migration and invasion in uveal melanoma via inhibition of the PI3K/AKT/mTOR signaling pathway. Oxid Med Cell Logev. 2021. https://doi.org/10.1155/2021/9911537.

Article  Google Scholar 

Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007.

Article  CAS  PubMed  Google Scholar 

Jiang T, Wang Z, Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res Ther. 2020;11:1–10. https://doi.org/10.1186/s13287-020-01723-6.

Article  CAS  Google Scholar 

Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Sys Rev. 2016;5:1–6. https://doi.org/10.1186/s13643-016-0329-y.

Article  Google Scholar 

Boeckmann L, Schäfer M, Bernhardt T, Semmler ML, Jung O, Ojak G, et al. Cold atmospheric pressure plasma in wound healing and cancer treatment. Appl Sci. 2020;10:6898. https://doi.org/10.3390/app10196898.

Article  CAS  Google Scholar 

Charipoor P, Nilforoushzadeh MA, Khani M, Nouri M, Ghasemi E, Amirkhani MA, et al. The FEDBD plasma’s quantitative investigation of skin parameters: skin elasticity, thickness, density, tissue oxygenation, perfusion, and edema. Heliyon. 2024;10(1):E23386. https://doi.org/10.1016/j.heliyon.2023.e23386.

Article  CAS  PubMed  Google Scholar 

Bong C, Choi JY, Bae J, Park S, Ko KS, Bak MS, et al. Effectiveness of ozone generated by a dielectric barrier discharge plasma reactor against multidrug-resistant pathogens and Clostridioides difficile spores. Sci Rep. 2022;12(1):14118. https://doi.org/10.1038/s41598-022-18428-w.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419. https://doi.org/10.3389/fphys.2018.00419.

Article  PubMed  PubMed Central  Google Scholar 

Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020;58:298–312. https://doi.org/10.1007/s12016-019-08729-w.

Article  CAS  PubMed  Google Scholar 

Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8:101. https://doi.org/10.3390/biomedicines8050101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abd El-Aleem SA, Abdelwahab S, AM‐Sherief H, Sayed A. Cellular and physiological upregulation of inducible nitric oxide synthase, arginase, and inducible cyclooxygenase in wound healing. J Cell Physiol. 2019;234:23618–32. https://doi.org/10.1002/jcp.28930.

Article  CAS  PubMed  Google Scholar 

Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97:258–67. https://doi.org/10.1111/imcb.12236.

Article  PubMed  PubMed Central  Google Scholar 

Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and Wound Healing. Adv Wound Care (New Rochelle). 2012;1:10–6. https://doi.org/10.1089/wound.2011.0307.

Article  PubMed  Google Scholar 

Gao X, Lu C, Miao Y, Ren J, Cai X. Role of macrophage polarisation in skin wound healing. Int Wound J. 2023;20:2551–62. https://doi.org/10.1111/iwj.14119.

Article  PubMed  PubMed Central  Google Scholar 

Sylvia C. The role of neutrophil apoptosis in influencing tissue repair. J Wound Care. 2003;12:13–6. https://doi.org/10.12968/jowc.2003.12.1.26458.

Article  CAS  PubMed  Google Scholar 

Lin PS, Chang HH, Yeh CY, Chang MC, Chan CP, Kuo HY, et al. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: role of MEK/ERK and activin receptor-like kinase-5/Smad signaling. J Formos Med Assoc. 2017;116:351–8. https://doi.org/10.1016/j.jfma.2016.07.014.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif