Exploration of the Potential Biomarker FNDC5 for Discriminating Heart Failure in Patients with Coronary Atherosclerosis

GBD 2017 disease and injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

Article  Google Scholar 

Fernandes VRS, Cheng S, Lima JAC. Atherosclerosis imaging and heart failure. Heart Fail Rev. 2006;11:279–88. https://doi.org/10.1007/s10741-006-0229-7.

Article  PubMed  Google Scholar 

Jain CC, Borlaug BA. Performance and interpretation of invasive hemodynamic exercise testing. Chest. 2020;158:2119–29. https://doi.org/10.1016/j.chest.2020.05.552.

Article  PubMed  PubMed Central  Google Scholar 

Gevaert AB, Kataria R, Zannad F, et al. Heart failure with preserved ejection fraction: recent concepts in diagnosis, mechanisms and management. Heart. 2022;108:1342–50. https://doi.org/10.1136/heartjnl-2021-319605.

Article  PubMed  Google Scholar 

Adamson PD, Hunter A, Madsen DM, et al. High-sensitivity cardiac troponin I and the diagnosis of coronary artery disease in patients with suspected angina pectoris. Circ Cardiovasc Qual Outcomes. 2018;11:e004227. https://doi.org/10.1161/circoutcomes.117.004227.

Article  PubMed  PubMed Central  Google Scholar 

Cwikiel J, Seljeflot I, Fagerland, et al. High-sensitive cardiac Troponin T and exercise stress test for evaluation of angiographically significant coronary disease. Int J Cardiol. 2019;287:1–6. https://doi.org/10.1016/j.ijcard.2019.04.019.

Article  PubMed  Google Scholar 

Meijers WC, Bayes-Genis A, Mebazaa A. Circulating heart failure biomarkers beyond natriuretic peptides: review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur J Heart Fail. 2021;23:1610–32. https://doi.org/10.1002/ejhf.2346.

Article  CAS  PubMed  Google Scholar 

Yasue H, Yoshimura M, Sumida H. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195–203. https://doi.org/10.1161/01.cir.90.1.195.

Article  CAS  PubMed  Google Scholar 

Zhang X, Hu C, Wu HM, et al. Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin. 2021;42:1390–400. https://doi.org/10.1038/s41401-020-00557-5.

Article  CAS  PubMed  Google Scholar 

Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol. 2023. https://doi.org/10.1038/s41569-023-00887-x. (Online ahead of print).

Article  PubMed  Google Scholar 

Lee DI, Zhu G, Sasaki T, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature. 2015;519:472–6. https://doi.org/10.1038/nature14332.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cao RY, Zheng H, Hong Y, et al. Cardiac rehabilitation with targeted intensity improves cardiopulmonary functions accompanying with reduced copeptin level in patients with coronary artery disease. J Cardiovasc Transl Res. 2021;14:317–26. https://doi.org/10.1007/s12265-020-10055-y.

Article  PubMed  Google Scholar 

McDonagh TA, Metra M, Adamo M, et al. ESC scientific document group, 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.

Article  CAS  PubMed  Google Scholar 

Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145:e895–1032. https://doi.org/10.1161/CIR.0000000000001063.

Article  PubMed  Google Scholar 

Korta P, Pocjec E, Mazur-Bialy A. Irisin as a multifunctional protein: implications for health and certain diseases. Medicina. 2019;55:485. https://doi.org/10.3390/medicina55080485.

Article  PubMed  PubMed Central  Google Scholar 

Benomar K, Espiard S, Loyer C, Jannin A, Vantyghem MC. Atrial natriuretic hormones and metabolic syndrome: recent advances. Presse Med. 2018;47:116–24. https://doi.org/10.1016/j.lpm.2017.12.002.

Article  PubMed  Google Scholar 

Abd EI-Mottaleb NA, Galal HM, EI Maghraby KM, Gadallah AI. Serum irisin level in myocardial infarction patients with or without heart failure. Can J Physiol Pharmacol. 2019;97:932–8. https://doi.org/10.1139/cjpp-2018-0736.

Article  CAS  Google Scholar 

Matsuo Y, Gleitsmann K, Mangner N, et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle. 2015;6:62–72. https://doi.org/10.1002/jcsm.12006.

Article  PubMed  PubMed Central  Google Scholar 

Lecker SH, Zavin A, Cao P, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ Heart Fail. 2012;5:812–8. https://doi.org/10.1161/CIRCHEARTFAILURE.112.969543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Q, Kou W, Xu X, et al. FNDC5/Irisin inhibits pathological cardiac hypertrophy. Clin Sci (Lond). 2019;133:611–27. https://doi.org/10.1042/CS20190016.

Article  CAS  PubMed  Google Scholar 

Maak S, Norheim F, Drevon CA, Erickson HP. Progress and challenges in the biology of FNDC5 and Irisin. Endocr Rev. 2021;42:436–56. https://doi.org/10.1210/endrev/bnab003.

Article  PubMed  PubMed Central  Google Scholar 

Cao RY, Zheng H, Redfearn D, Yang J. FNDC5: a novel player in metabolism and metabolic syndrome. Biochimie. 2019;158:111–6. https://doi.org/10.1016/j.biochi.2019.01.001.

Article  CAS  PubMed  Google Scholar 

Ho JE, Zern EK, Wooster L, et al. Differential clinical profiles, exercise responses, and outcomes associated with existing HFpEF definitions. Circulation. 2019;140:353–65. https://doi.org/10.1161/circulationaha.118.039136.

Article  PubMed  PubMed Central  Google Scholar 

Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018;138:861–70. https://doi.org/10.1161/circulationaha.118.034646.

Article  PubMed  PubMed Central  Google Scholar 

Hashemi D, Mende M, Trippel TD, et al. Evaluation of the HFA-PEFF score: results from the prospective DIAST-CHF cohort. ESC Heart Fail. 2022;9:4120–8. https://doi.org/10.1002/ehf2.14131.

Article  PubMed  PubMed Central  Google Scholar 

Wijk SS, Aizpurua AB, Rocca HB, et al. The HFA-PEFF and H2FPEF scores largely disagree in classifying patients with suspected heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23:838–40. https://doi.org/10.1002/ejhf.2019.

Article  Google Scholar 

Pocock SJ, Ferreira JP, Packer M, et al. Biomarker-driven prognostic models in chronic heart failure with preserved ejection fraction: the EMPEROR-Preserved trial. Eur J Heart Fail. 2022;24:1869–78. https://doi.org/10.1002/ejhf.2607.

Article  CAS  PubMed  Google Scholar 

Schnabel R, Rupprecht HJ, Lackner KJ, Lubos E, Bickel C, Meyer J. Analysis of N-terminal-pro-brain natriuretic peptide and C-reactive protein for risk stratification in stable and unstable coronary artery disease: results from the AtheroGene study. Eur Heart J. 2005;26:241–9. https://doi.org/10.1093/eurheartj/ehi036.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif