Targeting LEF1-mediated epithelial-mesenchymal transition reverses lenvatinib resistance in hepatocellular carcinoma

Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

Article  PubMed  Google Scholar 

Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW et al (2022) Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat Cancer 3(4):386–401. https://doi.org/10.1038/s43018-022-00357-2

Article  PubMed  PubMed Central  Google Scholar 

Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7(1):6. https://doi.org/10.1038/s41572-020-00240-3

Article  PubMed  Google Scholar 

Sangro B, Sarobe P, Hervas-Stubbs S, Melero I (2021) Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 18(8):525–543. https://doi.org/10.1038/s41575-021-00438-0

Article  PubMed  PubMed Central  Google Scholar 

Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T et al (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122(3):664–671. https://doi.org/10.1002/ijc.23131

Article  CAS  PubMed  Google Scholar 

Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14(17):5459–5465. https://doi.org/10.1158/1078-0432.CCR-07-5270

Article  CAS  PubMed  Google Scholar 

Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W et al (2023) N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through WNT/beta-catenin and hippo signaling pathways. Gastroenterology 164(6):990–1005. https://doi.org/10.1053/j.gastro.2023.01.041

Article  CAS  PubMed  Google Scholar 

Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F (2022) Molecular mechanisms of resistance to tyrosine kinase inhibitors associated with hepatocellular carcinoma. Curr Cancer Drug Targets 22(6):454–462. https://doi.org/10.2174/1568009622666220330151725

Article  CAS  PubMed  Google Scholar 

Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F et al (2020) The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 5(1):87. https://doi.org/10.1038/s41392-020-0187-x

Article  PubMed  PubMed Central  Google Scholar 

da Fonseca LG, Reig M, Bruix J (2020) Tyrosine kinase inhibitors and hepatocellular carcinoma. Clin Liver Dis 24(4):719–737. https://doi.org/10.1016/j.cld.2020.07.012

Article  PubMed  Google Scholar 

Pan J, Zhang M, Dong L, Ji S, Zhang J, Zhang S et al (2023) Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy 19(4):1184–1198. https://doi.org/10.1080/15548627.2022.2117893

Article  CAS  PubMed  Google Scholar 

Ao J, Chiba T, Shibata S, Kurosugi A, Qiang N, Ma Y et al (2021) Acquisition of mesenchymal-like phenotypes and overproduction of angiogenic factors in lenvatinib-resistant hepatocellular carcinoma cells. Biochem Biophys Res Commun 549:171–178. https://doi.org/10.1016/j.bbrc.2021.02.097

Article  CAS  PubMed  Google Scholar 

Hu B, Zou T, Qin W, Shen X, Su Y, Li J et al (2022) Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma. Cancer Res 82(20):3845–3857. https://doi.org/10.1158/0008-5472.CAN-21-4140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang S, Ma Z, Zhou Q, Wang A, Gong Y, Li Z et al (2022) Genome-wide CRISPR/Cas9 library screening identified that DUSP4 deficiency induces lenvatinib resistance in hepatocellular carcinoma. Int J Biol Sci 18(11):4357–4371. https://doi.org/10.7150/ijbs.69969

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Shen H, Huang W, He S, Chen J, Zhang D et al (2021) Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 7(1):359. https://doi.org/10.1038/s41420-021-00747-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

He X, Hikiba Y, Suzuki Y, Nakamori Y, Kanemaru Y, Sugimori M et al (2022) EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells. Sci Rep 12(1):8007. https://doi.org/10.1038/s41598-022-12076-w

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Huang M, Long J, Yao Z, Zhao Y, Zhao Y, Liao J et al (2023) METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res 83(1):89–102. https://doi.org/10.1158/0008-5472.CAN-22-0963

Article  CAS  PubMed  Google Scholar 

Duan A, Li H, Yu W, Zhang Y, Yin L (2022) Long noncoding RNA XIST promotes resistance to lenvatinib in hepatocellular carcinoma cells via epigenetic inhibition of NOD2. J Oncol 2022:4537343. https://doi.org/10.1155/2022/4537343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ozvegy-Laczka C, Cserepes J, Elkind NB, Sarkadi B (2005) Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resist Updat 8(1–2):15–26. https://doi.org/10.1016/j.drup.2005.02.002

Article  CAS  PubMed  Google Scholar 

Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK et al (2019) The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 8(10). https://doi.org/10.3390/cells8101118

Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101(34):12682–12687. https://doi.org/10.1073/pnas.0404875101

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Henderson WR, Jr., Chi E Y, Ye X, Nguyen C, Tien Y T, Zhou B, et al (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107(32):14309–14314. https://doi.org/10.1073/pnas.1001520107

Article  ADS  PubMed  PubMed Central  Google Scholar 

Chen CL, Tsai YS, Huang YH, Liang YJ, Sun YY, Su CW et al (2018) Lymphoid enhancer factor 1 contributes to hepatocellular carcinoma progression through transcriptional regulation of epithelial-mesenchymal transition regulators and stemness genes. Hepatol Commun 2(11):1392–1407. https://doi.org/10.1002/hep4.1229

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi W, Ozawa M (2013) The transcription factor LEF-1 induces an epithelial-mesenchymal transition in MDCK cells independent of beta-catenin. Biochem Biophys Res Commun 442(1–2):133–138. https://doi.org/10.1016/j.bbrc.2013.11.031

Article  CAS  PubMed  Google Scholar 

Basu S, Cheriyamundath S, Ben-Ze'ev A (2018) Cell-cell adhesion: linking Wnt/beta-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res 7. https://doi.org/10.12688/f1000research.15782.1

Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629. https://doi.org/10.1038/nrclinonc.2017.44

Article  PubMed  PubMed Central  Google Scholar 

Dart A (2023) EMT in chemoresistance. Nat Rev Cancer 23(6):349. https://doi.org/10.1038/s41568-023-00581-7

Article  CAS  PubMed  Google Scholar 

Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. https://doi.org/10.1016/j.cell.2006.10.018

Article  CAS  PubMed  Google Scholar 

Lambertini E, Franceschetti T, Torreggiani E, Penolazzi L, Pastore A, Pelucchi S et al (2010) SLUG: a new target of lymphoid enhancer factor-1 in human osteoblasts. BMC Mol Biol 11:13. https://doi.org/10.1186/1471-2199-11-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santiago L, Daniels G, Wang D, Deng FM, Lee P (2017) Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am J Cancer Res 7(6):1389–1406

CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif