The origin and evolution of Wnt signalling

Holstein, T. W. The evolution of the Wnt pathway. Cold Spring Harb. Perspect. Biol. 4, a007922 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Jung, H.-C. & Kim, K. Identification of MYCBP as a β-catenin/LEF-1 target using DNA microarray analysis. Life Sci. 77, 1249–1262 (2005).

Article  CAS  PubMed  Google Scholar 

Pate, K. T. et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33, 1454–1473 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jho, E. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swarup, S. & Verheyen, E. M. Wnt/Wingless signaling in Drosophila. Cold Spring Harb. Perspect. Biol. 4, a007930 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Philipp, I. et al. Wnt/β-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc. Natl Acad. Sci. USA 106, 4290–4295 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Lengfeld, T. et al. Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev. Biol. 330, 186–199 (2009).

Article  CAS  PubMed  Google Scholar 

Gurley, K. A., Rink, J. C. & Alvarado, A. S. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008).

Article  CAS  PubMed  Google Scholar 

Pond, K. W., Doubrovinski, K. & Thorne, C. A. Wnt/β-catenin signaling in tissue self-organization. Genes 11, 939 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

Article  CAS  PubMed  Google Scholar 

White, J. J. WNT signaling perturbations underlie the genetic heterogeneity of Robinow syndrome. Am. J. Hum. Genet. 102, 27–43 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, C. et al. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG Adv. 3, 100074 (2022).

CAS  PubMed  Google Scholar 

Caricasole, A. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J. Neurosci. 24, 6021–6027 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pang, K. et al. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 1, 10 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janssen, R. et al. Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol. Biol. 10, 374 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hobmayer, B. et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189 (2000).

Article  CAS  PubMed  Google Scholar 

Ros-Rocher, N., Pérez-Posada, A., Leger, M. M. & Ruiz-Trillo, I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol. 11, 200359 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruiz-Trillo, I. & de Mendoza, A. Towards understanding the origin of animal development. Development 147, dev192575 (2020). The paper provides a theoretical approach to understanding the transition from unicellular to multicellular organisms.

Article  CAS  PubMed  Google Scholar 

Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caricasole, A., Ferraro, T., Rimland, J. M. & Terstappen, G. C. Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157 (2002).

Article  CAS  PubMed  Google Scholar 

Coombs, G. S. et al. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J. Cell Sci. 123, 3357–3367 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K. & Perrimon, N. The segment polarity gene Porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116–3128 (1996).

Article  CAS  PubMed  Google Scholar 

Bänziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

Article  PubMed  Google Scholar 

Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006). Together with Bänziger et al. (2006), this paper describes the discovery of a key component in Wnt secretion (EVI/WLS).

Article  CAS  PubMed  Google Scholar 

Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

Article  CAS  PubMed  Google Scholar 

Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

Article  CAS  PubMed  Google Scholar 

Torres, V. I., Barrera, D. P., Varas-Godoy, M., Arancibia, D. & Inestrosa, N. C. Selective surface and intraluminal localization of Wnt ligands on small extracellular vesicles released by HT-22 hippocampal neurons. Front. Cell Dev. Biol. 9, 735888 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Mehta, S., Hingole, S. & Chaudhary, V. The emerging mechanisms of Wnt secretion and signaling in development. Front. Cell Dev. Biol. 9, 714746 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Routledge, D. & Scholpp, S. Mechanisms of intercellular Wnt transport. Development 146, dev176073 (2019).

Article  CAS  PubMed  Google Scholar 

Gross, J. C. Extracellular WNTs: trafficking, exosomes, and ligand–receptor interaction. Handb. Exp. Pharmacol. 269, 29–43 (2021).

Article  CAS  PubMed  Google Scholar 

Leyns, L., Bouwmeester, T., Kim, S.-H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of Frizzled receptors. Proc. Natl Acad. Sci. USA 94, 2859–2863 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takada, S., Fujimori, S., Shinozuka, T., Takada, R. & Mii, Y. Differences in the secretion and transport of Wnt proteins. J. Biochem. 161, 1–7 (2017).

Article  CAS  PubMed  Google Scholar 

Üren, A. et al. Secreted Frizzled-related protein-1 binds directly to wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

Article  PubMed  Google Scholar 

Mulligan, K. A. et al. Secreted Wingless-interacting molecule (SWIM) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl Acad. Sci. USA 109, 370–377 (2012).

Article  CAS  PubMed  Google Scholar 

Giráldez, A. J., Copley, R. R. & Cohen, S. M. HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev. Cell 2, 667–676 (2002).

Article  PubMed  Google Scholar 

McGough, I. J. et al. Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 585, 85–90 (2020).

Article  CAS 

留言 (0)

沒有登入
gif