Green-Synthesized Silver Nanoparticles in the Prevention of Multidrug-Resistant Proteus mirabilis Infection and Incrustation of Urinary Catheters BioAgNPs Against P. mirabilis Infection

Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. https://doi.org/10.1038/nrmicro3432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holling N, Lednor D, Tsang S et al (2014) Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis. Infect Immun 82:1616–1626. https://doi.org/10.1128/IAI.01652-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schaffer JN, Pearson MM (2015) Proteus mirabilis and urinary tract infections. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.UTI-0017-2013

Article  PubMed  Google Scholar 

Norsworthy AN, Pearson MM (2017) From catheter to kidney stone: the uropathogenic lifestyle of Proteus mirabilis. Trends Microbiol 25:304–315. https://doi.org/10.1016/j.tim.2016.11.015

Article  CAS  PubMed  Google Scholar 

Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria: activity of silver nanoparticles against MDR bacteria. J Appl Microbiol 112:841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x

Article  CAS  PubMed  Google Scholar 

Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog 116:263–272. https://doi.org/10.1016/j.micpath.2018.01.033

Article  CAS  PubMed  Google Scholar 

Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01831

Article  PubMed  PubMed Central  Google Scholar 

Scandorieiro S, de Camargo LC, Lancheros CAC et al (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00760

Article  PubMed  PubMed Central  Google Scholar 

Park TJ, Lee KG, Lee SY (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100:521–534. https://doi.org/10.1007/s00253-015-6904-7

Article  CAS  PubMed  Google Scholar 

Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100:6555–6570. https://doi.org/10.1007/s00253-016-7657-7

Article  CAS  PubMed  Google Scholar 

Ding YH, Floren M, Tan W (2016) Mussel-inspired polydopamine for bio-surface functionalization. Biosurf Biotribol 2:121–136. https://doi.org/10.1016/j.bsbt.2016.11.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swartjes JJTM, Sharma PK, Kooten TG et al (2015) Current developments in antimicrobial surface coatings for biomedical applications. CMC 22:2116–2129. https://doi.org/10.2174/0929867321666140916121355

Article  CAS  Google Scholar 

Su L, Yu Y, Zhao Y et al (2016) Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci Rep 6:24420. https://doi.org/10.1038/srep24420

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. https://doi.org/10.1021/cr400407a

Article  ADS  CAS  PubMed  Google Scholar 

Zhou J, Xiong Q, Ma J et al (2016) Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: from nanogap engineering to multifunctionality. ACS Nano 10:11066–11075. https://doi.org/10.1021/acsnano.6b05951

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fourie G, Steenkamp ET, Ploetz RC et al (2011) Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect Genet Evol 11:533–542. https://doi.org/10.1016/j.meegid.2011.01.012

Article  CAS  PubMed  Google Scholar 

Khan MA, Khan SA, Waheed U et al (2021) Morphological and genetic characterization of Fusarium oxysporum and its management using weed extracts in cotton. J King Saud Univ - Sci 33:101299. https://doi.org/10.1016/j.jksus.2020.101299

Article  Google Scholar 

Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x

Article  CAS  Google Scholar 

White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc: Guide Methods Appl 18:315–322

Google Scholar 

O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493. https://doi.org/10.1080/00275514.1998.12026933

Article  Google Scholar 

O’Donnell K, Gueidan C, Sink S et al (2009) A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948. https://doi.org/10.1016/j.fgb.2009.08.006

Article  CAS  PubMed  Google Scholar 

Lombard L, Sandoval-Denis M, Lamprecht SC, Crous PW (2019) Epitypification of Fusarium oxysporum – clearing the taxonomic chaos. Persoonia 43:1–47. https://doi.org/10.3767/persoonia.2019.43.01

Article  CAS  PubMed  Google Scholar 

Noriler SA, Savi DC, Aluizio R et al (2018) Bioprospecting and structure of fungal endophyte communities found in the brazilian biomes, pantanal, and cerrado. Front Microbiol 9:1526. https://doi.org/10.3389/fmicb.2018.01526

Article  PubMed  PubMed Central  Google Scholar 

Noriler SA, Savi DC, Ponomareva LV et al (2019) Vochysiamides A and B: two new bioactive carboxamides produced by the new species diaporthe vochysiae. Fitoterapia 138:104273. https://doi.org/10.1016/j.fitote.2019.104273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maryani N, Lombard L, Poerba YS et al (2019) Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Stud Mycol 92:155–194. https://doi.org/10.1016/j.simyco.2018.06.003

Article  CAS  PubMed  Google Scholar 

Wang MM, Crous PW, Sandoval-Denis M et al (2022) Fusarium and allied genera from China: species diversity and distribution. Persoonia 48:1–53. https://doi.org/10.3767/persoonia.2022.48.01

Article  PubMed  PubMed Central  Google Scholar 

Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

Article  PubMed  PubMed Central  Google Scholar 

Ariyawansa HA, Hawksworth DL, Hyde KD et al (2014) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Divers 69:57–91. https://doi.org/10.1007/s13225-014-0315-4

Article  Google Scholar 

Durán N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. https://doi.org/10.1186/1477-3155-3-8

Article  Google Scholar 

Clinical and Laboratory Standards Institute (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10 ; approved standard, 10. ed. Committee for Clinical Laboratory Standards, Wayne, PA

Barry AL, Craig WA, Nadler H et al (1999) Methods for determining bactericidal activity of antimicrobial agents. Approv Guidel 19:1–3

Google Scholar 

Bazargani MM, Rohloff J (2016) Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–164. https://doi.org/10.1016/j.foodcont.2015.09.036

Article  CAS  Google Scholar 

Chaieb K, Kouidhi B, Jrah H et al (2011) Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 11:29. https://doi.org/10.1186/1472-6882-11-29

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang R, Neoh KG, Kang E et al (2015) Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J Biomed Mater Res 103:519–528. https://doi.org/10.1002/jbm.b.33230

Article  CAS  Google Scholar 

Gholami-Shabani M, Akbarzadeh A, Norouzian D et al (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. https://doi.org/10.1007/s12010-014-0809-2

Article  CAS  PubMed  Google Scholar 

Raza M, Kanwal Z, Rauf A et al (2016) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6:74. https://doi.org/10.3390/nano6040074

留言 (0)

沒有登入
gif