A Comprehensive Review of Cancer Drug–Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies

Kumar D, et al. Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks. IEEE Access. 2020;8:142521–31.

Article  Google Scholar 

• Advancing Cancer Therapy. Nature Cancer. 2021;2(3):245–6. This article mentioned detailed view of recent updated cancer treatment option.

Article  Google Scholar 

Sadurska E. Current views on anthracycline cardiotoxicity in childhood cancer survivors. Pediatr Cardiol. 2015;36(6):1112–9.

Article  PubMed  PubMed Central  Google Scholar 

Tan L-L, Lyon AR. Role of biomarkers in prediction of cardiotoxicity during cancer treatment. Curr Treat Options Cardiovasc Med. 2018;20(7):55.

Article  PubMed  PubMed Central  Google Scholar 

Curigliano G, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171–90.

Article  PubMed  Google Scholar 

Yu AF, Jones LW. Breast cancer treatment-associated cardiovascular toxicity and effects of exercise countermeasures. Cardio-Oncology. 2016;2(1):1.

Article  PubMed  PubMed Central  Google Scholar 

Ginzac A, et al. Treatment-induced cardiotoxicity in breast cancer: a review of the interest of practicing a physical activity. Oncology. 2019;96(5):223–34.

Article  PubMed  Google Scholar 

Albini A, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.

Article  PubMed  PubMed Central  Google Scholar 

Blanco JG, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(13):1415.

Article  PubMed  Google Scholar 

Pavo N, et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015;101(23):1874–80.

Article  PubMed  Google Scholar 

Lipshultz SE, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–44.

Article  PubMed  Google Scholar 

Krischer JP, et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15(4):1544–52.

Article  PubMed  Google Scholar 

Ezaz G, et al. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 2014;3(1):e000472.

Article  PubMed  PubMed Central  Google Scholar 

Herrmann J, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014. Elsevier.

Fogarassy G, et al. Risk prediction model for long-term heart failure incidence after epirubicin chemotherapy for breast cancer–a real-world data-based, nationwide classification analysis. Int J Cardiol. 2019;285:47–52.

Article  PubMed  Google Scholar 

Curigliano G, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):vii155-66.

Article  PubMed  Google Scholar 

Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011;3(1):1351–71.

Article  PubMed  Google Scholar 

Finet JE, Tang WHW. Protecting the heart in cancer therapy. F1000Res. 2018;28(7).

Didagelos M, et al. Bleomycin cardiotoxicity during chemotherapy for an ovarian germ cell tumor. Hippokratia. 2013;17(2):187–8.

PubMed  PubMed Central  Google Scholar 

Rajkumar SV. Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol. 2018;93(8):1091–110.

Article  Google Scholar 

Battisti NML, et al. Long-term outcome with targeted therapy in advanced/metastatic HER2-positive breast cancer: The Royal Marsden experience. Breast Cancer Res Treat. 2019;178(2):401–8.

Article  MathSciNet  PubMed  Google Scholar 

Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33(35):4210–8.

Article  PubMed  PubMed Central  Google Scholar 

Shacham-Abulafia A, et al. Real-life experience with ponatinib in chronic myeloid leukemia: a multicenter observational study. Clin Lymphoma Myeloma Leuk. 2018;18(7):e295–301.

Article  PubMed  Google Scholar 

Procopio G, et al. Sorafenib versus observation following radical metastasectomy for clear-cell renal cell carcinoma: results from the phase 2 randomized open-label RESORT study. Eur Urol Oncol. 2019;2(6):699–707.

Article  PubMed  Google Scholar 

Khaled H, et al. A multicenter, phase II study of the RAF-kinase inhibitor sorafenib in patients with advanced renal cell carcinoma. Mol Clin Oncol. 2015;3(5):1099–102.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

Lee JL, et al. RandomizEd phase II trial of Sunitinib four weeks on and two weeks off versus two weeks on and one week off in metastatic clear-cell type REnal cell carcinoma: RESTORE trial. Ann Oncol. 2015;26(11):2300–5.

Article  PubMed  Google Scholar 

Fausto C, et al. Nilotinib 300 mg twice daily: an academic single-arm study of newly diagnosed chronic phase chronic myeloid leukemia patients. Haematologica. 2016;101(10):1200–7.

Article  Google Scholar 

Ganatra S, et al. Ibrutinib-associated atrial fibrillation. JACC Clin Electrophysiol. 2018;4(12):1491–500.

Article  PubMed  Google Scholar 

Grothey A, et al. Evolving role of regorafenib for the treatment of advanced cancers. Cancer Treat Rev. 2020;86(101993):20.

Google Scholar 

de Lavallade H, et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol. 2008;26(20):3358–63.

Article  PubMed  Google Scholar 

Olshen A, et al. Dynamics of chronic myeloid leukemia response to dasatinib, nilotinib, and high-dose imatinib. Haematologica. 2014;99(11):1701–9.

Article  PubMed  PubMed Central  Google Scholar 

•• Kamaraju S, et al. Interactions between cardiology and oncology drugs in precision cardio-oncology. Clin Sci. 2021;135(11):1333–51. Mentioned about detailed interactions of cardiology and oncology drugs in precision medicine.

Article  Google Scholar 

Xu B, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(3):351–60.

Article  PubMed  Google Scholar 

Hauschild A, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

Article  PubMed  Google Scholar 

Hoffner B, Benchich K. Trametinib: a targeted therapy in metastatic melanoma. J Adv Pract Oncol. 2018;9(7):741–5.

PubMed  PubMed Central  Google Scholar 

Chapman PB, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

Article  PubMed  PubMed Central  Google Scholar 

Valenzuela MM, Neidigh JW, Wall NR. Antimetabolite treatment for pancreatic cancer. Chemotherapy. 2014;3(3):2167–7700.

Google Scholar 

Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother. 2021;137:111285.

Article  PubMed  Google Scholar 

Isakoff SJ, et al. Bosutinib plus capecitabine for selected advanced solid tumours: results of a phase 1 dose-escalation study. Br J Cancer. 2014;111(11):2058–66.

Article  PubMed  PubMed Central  Google Scholar 

Hettiarachchi SM, et al. Docetaxel-induced interstitial lung disease among patients with breast cancer: a case series and review of literature. Respirol Case Rep. 2021;9(7):e00802. https://doi.org/10.1002/rcr2.802. eCollection 2021 Jul.

Article  PubMed  PubMed Central  Google Scholar 

Stoicescu EA, et al. Docetaxel for breast cancer treatment-side effects on ocular surface, a systematic review. Processes. 2021;9(7):1086.

Article  Google Scholar 

Abu Samaan TM, et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789.

Article  PubMed  PubMed Central  Google Scholar 

Amaya C, et al. Exposure to low intensity ultrasound removes paclitaxel cytotoxicity in breast and ovarian cancer cells. BMC Cancer. 2021;21(1):981.

Article  PubMed  PubMed Central  Google Scholar 

Dhyani P, et al. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022;22(1):206.

Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif