Reliability of landmark identification for analysis of the temporomandibular joint in real-time MRI

Quast A, Santander P, Trautmann J, Moser N, Schliephake H, Meyer-Marcotty P. A new approach in three dimensions to define pre- and intraoperative condyle-fossa relationships in orthognathic surgery - is there an effect of general anaesthesia on condylar position? Int J Oral Maxillofac Surg. 2020;49:1303–10. https://doi.org/10.1016/j.ijom.2020.02.011.

Article  CAS  PubMed  Google Scholar 

Krishnadas A, Subash P, Iyer S, Manju V, Thankappan K, Pullan S, et al. Controlling and stabilising mandible during reconstruction: significance and techniques. J Maxillofac Oral Surg. 2023;22:56–63. https://doi.org/10.1007/s12663-023-01897-5.

Article  PubMed  Google Scholar 

Incesu L, Taşkaya-Yilmaz N, Oğütcen-Toller M, Uzun E. Relationship of condylar position to disc position and morphology. Eur J Radiol. 2004;51:269–73. https://doi.org/10.1016/S0720-048X(03)00218-3.

Article  CAS  PubMed  Google Scholar 

Klenke D, Quast A, Prelog M, Holl-Wieden A, Riekert M, Stellzig-Eisenhauer A, Meyer-Marcotty P. TMJ pathomorphology in patients with JIA-radiographic parameters for early diagnosis. Head Face Med. 2018;14:15. https://doi.org/10.1186/s13005-018-0173-5.

Article  PubMed  PubMed Central  Google Scholar 

Santander P, Quast A, Olbrisch C, Rose M, Moser N, Schliephake H, Meyer-Marcotty P. Comprehensive 3D analysis of condylar morphology in adults with different skeletal patterns - a cross-sectional study. Head Face Med. 2020;16:33. https://doi.org/10.1186/s13005-020-00245-z.

Article  PubMed  PubMed Central  Google Scholar 

Nagata M, Yamasaki Y, Hayasaki H, Nakata M. Incisal and condylar paths during habitual mouth opening movement of children with anterior reverse bite in the primary dentition. J Oral Rehabil. 2002;29:64–71. https://doi.org/10.1046/j.1365-2842.2002.00785.x.

Article  CAS  PubMed  Google Scholar 

Kucukkeles N, Ozkan H, Ari-Demirkaya A, Cilingirturk AM. Compatibility of mechanical and computerized axiographs: a pilot study. J Prosthet Dent. 2005;94:190–4. https://doi.org/10.1016/j.prosdent.2005.04.025.

Article  CAS  PubMed  Google Scholar 

Sójka A, Huber J, Kaczmarek E, Hędzelek W. Evaluation of mandibular movement functions using instrumental ultrasound system. J Prosthodont. 2017;26:123–8. https://doi.org/10.1111/jopr.12389.

Article  PubMed  Google Scholar 

Shah A. Use of MRI in orthodontics - a review. J Imaging Interv Radiol. 2018. https://doi.org/10.21767/2471-8564.100003.

Article  Google Scholar 

Cai X-Y, Jin J-M, Yang C. Changes in disc position, disc length, and condylar height in the temporomandibular joint with anterior disc displacement: a longitudinal retrospective magnetic resonance imaging study. J Oral Maxillofac Surg. 2011;69:e340–6. https://doi.org/10.1016/j.joms.2011.02.038.

Article  PubMed  Google Scholar 

Bell KA, Miller KD, Jones JP. Cine magnetic resonance imaging of the temporomandibular joint. Cranio - J Craniomandib. 1992;10:313–7. https://doi.org/10.1080/08869634.1992.11677928.

Article  CAS  Google Scholar 

Frahm J, Voit D, Uecker M. Real-time magnetic resonance imaging: radial gradient-echo sequences with nonlinear inverse reconstruction. Investig Radiol. 2019;54:757–66. https://doi.org/10.1097/RLI.0000000000000584.

Article  Google Scholar 

Krohn S, Gersdorff N, Wassmann T, Merboldt K-D, Joseph AA, Buergers R, Frahm J. Real-time MRI of the temporomandibular joint at 15 frames per second-a feasibility study. Eur J Radiol. 2016;85:2225–30. https://doi.org/10.1016/j.ejrad.2016.10.020.

Article  PubMed  Google Scholar 

Krohn S, Joseph AA, Voit D, Michaelis T, Merboldt K-D, Buergers R, Frahm J. Multi-slice real-time MRI of temporomandibular joint dynamics. Dentomaxillofac Radiol. 2019;48:20180162. https://doi.org/10.1259/dmfr.20180162.

Article  PubMed  Google Scholar 

Barchetti F, Stagnitti A, Glorioso M, Al Ansari N, Barchetti G, Pranno N, et al. Static and dynamic MR imaging in the evaluation of temporomandibular disorders. Eur Rev Med Pharmacol Sci. 2014;18:2983–7.

CAS  PubMed  Google Scholar 

Cassetta M, Barchetti F, Pranno N, Marini M. Comparing proton density and turbo spin echo T2 weighted static sequences with dynamic half-Fourier single-shot TSE pulse sequence at 3.0 T in diagnosis of temporomandibular joint disorders: a prospective study. Dentomaxillofac Radiol. 2014;43:20130387. https://doi.org/10.1259/dmfr.20130387.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Travers KH, Buschang PH, Hayasaki H, Throckmorton GS. Associations between incisor and mandibular condylar movements during maximum mouth opening in humans. Arch Oral Biol. 2000;45:267–75. https://doi.org/10.1016/S0003-9969(99)00140-5.

Article  CAS  PubMed  Google Scholar 

Gallo LM, Gössi DB, Colombo V, Palla S. Relationship between kinematic center and TMJ anatomy and function. J Dent Res. 2008;87:726–30. https://doi.org/10.1177/154405910808700810.

Article  CAS  PubMed  Google Scholar 

Tymofiyeva O, Proff P, Richter E-J, Jakob P, Fanghänel J, Gedrange T, Rottner K. Correlation of MRT imaging with real-time axiography of TMJ clicks. Ann Anat. 2007;189:356–61. https://doi.org/10.1016/j.aanat.2007.02.009.

Article  PubMed  Google Scholar 

Kober C, Berg BI, Berg S, Leiggener C, Buitrago-Téllez C, Kordass B, et al. Do we need real-time MRI for diagnosis of temporomandibular joint disorders? Int J Comput Dent. 2011;14:111–8.

CAS  PubMed  Google Scholar 

Azuma T, Ito J, Kutsuki M, Nakai R, Fujita S, Tsutsumi S. Analysis of the mandibular movement by simultaneous multisection continuous ultrafast MRI. Magn Reson Imaging. 2009;27:423–33. https://doi.org/10.1016/j.mri.2008.07.015.

Article  PubMed  Google Scholar 

Krohn S, Frahm J, Mahler A, Dathe H, Sedaghat S, Kubein-Meesenburg D, et al. Biomechanical analysis of temporomandibular joint dynamics based on real-time magnetic resonance imaging. Int J Comput Dent. 2020;23:235–44.

PubMed  Google Scholar 

Mehl A. Is it possible to detect a true rotation axis of the temporomandibular joint with common pantographic methods? a fundamental kinematic analysis. Comput Methods Biomech Biomed Eng. 2020;23:445–55. https://doi.org/10.1080/10255842.2020.1724975.

Article  Google Scholar 

Safrany-Fark A, Laczi B, Nagy A, Lengyel L, Piffko J, Segatto E. A novel approach for determining instantaneous centers of rotation of the mandible with an intraoral scanner: a preliminary study. PLoS ONE. 2023;18:e0285162. https://doi.org/10.1371/journal.pone.0285162.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng Xu, Reiss PT, Cribben I. Generalized reliability based on distances. Biometrics. 2021;77:258. https://doi.org/10.1111/BIOM.13287.

Article  MathSciNet  Google Scholar 

Chen G, Taylor PA, Haller SP, Kircanski K, Stoddard J, Pine DS, et al. Intraclass correlation: Improved modeling approaches and applications for neuroimaging. Hum Brain Mapp. 2018;39:1187–206. https://doi.org/10.1002/HBM.23909.

Article  PubMed  Google Scholar 

The MathWorks Inc. MATLAB version: 9.6.0.1472908 (R2019a) Update 9 2019. Natick, Massachusetts, United States: The MathWorks Inc.

Koo TK, Mae YL. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155. https://doi.org/10.1016/J.JCM.2016.02.012.

Article  PubMed  PubMed Central  Google Scholar 

Heil A, Lazo Gonzalez E, Hilgenfeld T, Kickingereder P, Bendszus M, Heiland S, et al. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: a feasibility study in children and adolescents. PLOS ONE. 2017;12:e0174524.

Article  PubMed  PubMed Central  Google Scholar 

Juerchott A, Freudlsperger C, Weber D, Jende JME, Saleem MA, Zingler S, et al. In vivo comparison of MRI- and CBCT-based 3D cephalometric analysis: beginning of a non-ionizing diagnostic era in craniomaxillofacial imaging? Eur Radiol. 2020;30:1488–97. https://doi.org/10.1007/S00330-019-06540-X/METRICS.

Article  PubMed  Google Scholar 

Gilmour L, Ray N. Locating Cephalometric X-Ray Landmarks with Foveated Pyramid Attention. In: Proceedings of the Third Conference on Medical Imaging with Deep Learning, Montreal, QC, Canada, 6–8 July 2020; Volume 121, pp. 262–276. https://doi.org/10.3390/healthcare10112188.

Geiger D, Bae WC, Statum S, Du J, Chung CB. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology. Skeletal Radiol. 2014;43:19–25. https://doi.org/10.1007/s00256-013-1738-9.

Article  PubMed  Google Scholar 

Kim JJ, Nam H, Kaipatur NR, Major PW, Flores-Mir C, Lagravere MO, Romanyk DL. Reliability and accuracy of segmentation of mandibular condyles from different three-dimensional imaging modalities: a systematic review. Dentomaxillofac Radiol. 2020;49:20190150. https://doi.org/10.1259/dmfr.20190150.

Article  PubMed  Google Scholar 

März K, Chepura T, Plewig B, Haddad D, Weber D, Schmid M, et al. Cephalometry without complex dedicated postprocessing in an oriented magnetic resonance imaging dataset: a pilot study. Eur J Orthod. 2021;43:614–21. https://doi.org/10.1093/EJO/CJAA066.

Article  PubMed  Google Scholar 

Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei SM. Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac Radiol. 2013;42:20110187. https://doi.org/10.1259/dmfr.20110187.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif